• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
3
0
0

Texto

(1)

Low-Temperature Eletron Mobility in

Paraboli Quantum Wells

R. M. Seraideand G.-Q. Hai

InstitutoFsiade S~aoCarlos, USP,13566-590 S~aoCarlos,SP, Brazil

Reeivedon23April,2001

Wepresent a theoretialstudyonthe eletronmobility and satteringmehanism inaremotely

dopedAlGaAswideparaboliquantumwell. Eletron mobilitiesindierentsubbands are

alu-lated fromtheself-onsistent resultsof thesubbandenergyand wavefuntioninthesystem. The

satteringduetoionizedimpuritiesandalloydisorderisonsidered. Weshowtheinterplayofthe

dierentsatteringmehanisms.

I Introdution

Improvementsofthesemiondutorgrowthtehniques

have oered the possibility to obtain low-dimensional

semiondutorstrutureswithdesiredwellshapes. One

of those strutures is the so-alled paraboli

quan-tum well (PQW). The PQW's based on GaAs have

beendeveloped bytailoring theondution-bandedge

of a graded Al

x Ga

1 x

As semiondutor ternary alloy

throughproperlyvarying theAl molefration x.[1, 2℄

Beause athikand uniformeletronslab(in orderof

10 3

A)anbeobtainedinawidePQW,remotelydoped

widePQW'shavebeenproposedasstruturesinwhih

ahigh-mobilityquasi-three-dimensional(Q3D)eletron

gasanberealized. Magneto-transportexperimentson

thesesystemsonrmedtheexisteneofathikslabof

high-mobilityeletrongas.[2℄

Althoughanumberofexperimentalandtheoretial

studieshavebeendoneontheeletrontransport

prop-erties in suh a system sine the rst AlGaAs PQW

was realizedby MBE twelveyears ago,the sattering

mehanism and eletron mobility are not well

under-stoodyet.[3℄Infat,theso-alledQ3Deletrongasisa

systemomposedbyawideQ2Dsystemwithmultiple

eletronsubbandspopulated.Clearly,theintersubband

interationisofimportantontributiontotheeletron

transport. Furthermore, beyond the remotely doped

impurity sattering, other sattering mehanisms an

bedeisiveto theeletronmobilitysuhasalloy

sat-terngandbakgroundaeptorsin arealsample.

In this work, we study theoretially the eletron

mobilityandsatteringmehanisminAlGaAsPQW's.

We start witha self-onsistentalulation of the

sub-band struture in Se. II whih yields the subband

energyandthewavefuntioninthesystem. Twolayers

of donors are remotely doped asymmetrially in two

sides of the well. Typially more than one subbands

arepopulated. Theionizedimpuritysatteringand

al-loysatteringareonsideredinSe. III.Thetransport

mobiltyofeletronsindierentsubbandsarealulated

bysolvingtheBoltzmannequation. Wealsoonsidered

theeetsofthebakgroundaeptorsontheeletron

mobilities. Weshowtheinterplayofthedierent

sat-teringmehanisms.

II Eletroni strutures

The eletron energy and wavefuntion in a Q2D

sys-tem an be written as E

n (

~

k) = E

n +~

2

k 2

=2m

and

n; ~

k

(x;y;z) =

n

(z)exp(i ~

k~r)= p

A; where n =1, 2,

... is the subband index, ~r ( ~

k) the eletron position

(wavevetor) in the xy-plane, E

n

thesubband energy,

n

(z)theeletronwavefuntioninthez-diretion,m

theeletroneetivemass,andAtheareaofsample.

The paraboli quantum wells are formed by

Al

0:3 Ga

0:7

As barrier and the onentration of the Al

isvariedfromx=0attheenterofthewelltox=0:1

at the edge of the well. By tailoring the

ondution-band edge of Al

x Ga

1 x

As, weonstrut thefollowing

onnementpotentialtotheeletrons

V

C (z)=

1

2 m

2

z 2

; jzjW

QW =2

V

B

; jzj>W

QW =2,

(1)

where V

B

is the potential of the barrier, =

2 p

2V

b =m

=W

QW

,andW

QW

isthewidthofthe

quan-tum well. In the above expression, the potential

at the enter of the QW is zero (GaAs). At the

edges of the well (z = W

QW =2), V

C = V

b: Notie

that V

b V

B

: The ondution band o-set between

Al

x Ga

1 x

As and GaAs is a funtion of x given by

V(x) = 0:6(1:155x+0:037x 2

) eV. In the present

alulation, we take V

B

= 228 meV (x = 0:3) for

(2)

systemisremotelydopedwithtwolayersofimpurities

in twosidesof thequantum well. Theimpurity

distri-bution istakenthefollowingform

n

D (z)=

8

<

: N

D;L =W

D;L

; jz Z

D;L jW

D;L =2

N

D;R =W

D;R

; jz Z

D;R j<W

D;R =2

0; otherwise,

whereN

D;L ,W

D;L and Z

D;L (N

D;R ,W

D;R andZ

D;R )

are the arealonentration, thethe thikness and the

positionofthedopedimpuritylayerontheleft(right)

sideofthequantumwell,respetively.

ThesubbandenergyE

n

andtheeletron

wavefun-tion

n

(z) aredeterimed bythe Shrodinger equation

in thez-diretion. The eetiveonnementpotential

entering the Hamiltonian is V

eff

(z)= V

H (z)+V

C (z)

whih is omposed as a sum of the potential V

C (z)

givenin Eq. (1)andtheHartreepotentialV

H

(z). The

Hartree potential, governed by the Poisson equation,

dependesontheionizedimprityandeletron

distribu-tionn

e

(z). Atzero-temperature,theeletron

distribu-tionisgivenby

n

e (z)=

N

X

n=1 j

n (z)j

2 Z

EF

En

(E)dE;

where N is the number of the oupied subbands,

(E) is the eletron density of states of the system

and E

F

is the Fermi energy. Beause the eletron

distribution depends on E

n and

n

(z), the solution

of the Poisson equation is, in turn, dependent on

the Shrodinger equation. In this work, we solve

the oupled Shrodinger and Poisson equations

self-onsistently. Inthealulation,thetotalarealeletron

densityN

e =

R

1

1 n

e

(z)dzis determinedbythe

dier-ene betweenN

D and N

A

, where N

D =N

D;L +N

D;R

is total areal donor onentrations and N

A

is the

to-tal areal aeptor onentrations. N

A

an be

esti-matedfrom thethiknessofthedepletionlayerwitha

uniform distribution of the bakground aeptors n

A .

Fig. 1 gives an example of the self-onsistent

solu-tionsforaquantum wellofwidthW

QW =760

A. The

eetive onnement potential prole V

eff

(z)

(thik-solidurve),therstthreequantizedeletronlevelsE

n

andtheorrespondingwavefuntions

n

(z)are

demon-strated. Inthegure,theenergyismeasuredfromthe

FermienergyE

F

. Twodonorimpuritylayersare200

A

awayfromtherightandleft edgeofthequantumwell

indiatedbythevertiledottedlines. Thebakground

aeptoronentrationistakenasn

A =10

15

m 3

.

Figure1. Theeletroni strutureof a paraboli AlGaAs

quantum well of width 760

A. The donor distribution is

dened by the parameters: ND;L = ND;R = 1:510 12

m 2

,WD;L=20

A,WD;R=100

A,ZD;L= 590

A, and

Z

D;R = 630

A. The aeptoronentration is n

A = 10

15

m 3

. TherstthreelevelsE

n

areindiatedandthe

orre-spondingwavefuntionsaregivenbysolid,dash,and

dash-dottedurves. Thevertial thin-dottedlinesand the

sym-bles\+"indiatethetwodoppinglayers.

III Sattering mehanismand eletron

mobility

Atlow-temperature,themostpossiblesattering

meh-anisms limitting the eletron mobility in the present

systemarethe remotelydopedionized donors,the

al-loydisorderpotentialof AlGaAs,and thebakground

aeptors.[4,5℄

Thesreeningoftheeletrongasisessentialto

de-terminethe sattering due to ionized impurities. The

sreenedionizedimpuritypotentialanbeobtainedin

termsof the stati dieletri response funtion within

the random-phase approximation (RPA). Beause of

theoupationofseveralsubbands,thedieletri

fun-tionhasatensorharatergivenby

nn 0

;mm 0

(~q). Ifwe

assumethattheimpuritiesareuniformlydistributedin

thexy-planeand are unorrelated, the transition

ma-trix element due to the sreened Coulomb sattering

potentialisgivenby,[4℄

jM

nn 0

(~q)j 2

=

2e 2

q

2 Z

dz

i n

imp (z

i )ju

nn 0

(q)j 2

(3)

with

u

nn 0

(q)= X

mm 0

1

nn 0

;mm 0

(~q)G

mm 0

(q;z

i );

and

G

mm 0

(q;z

i )=

Z

dz

m (z)

m 0

(z)e qjz zij

;

where ~q = ~

k ~

k 0

is the hange in eletron

momen-tum due to sattering. In equation (2), we take

n

imp

(z) = n

D

(z) for remotely doped donor satteing

andn

imp (z)=n

A

forbakgroundaeptorsattering.

Foralloy sattering, the sattering matrixis given

by[6℄

jM

nn 0

(~q)j 2

=(ÆV) 2

Z

dz[1 x(z)℄x(z)j

n (z)

n 0

(z)j 2

;

wherex(z)isthepositiondependentAl onentration.

ForAlGaAs,ÆV =0:6eV.Notiethat,thematrix

ele-mentduetoalloysatteringisindependenton~q.

Usingtheabovesattering matrixelementsdue to

dierent sattering mehanism, we alulate the

ele-trontransport mobility from the Boltzmann equation

inthepresentmultisubband Q2Dsystem.[4℄

Fig. 2showsthetransport mobilitiesasafuntion

of total eletrondensityfor the eletronsin subbands

n=1,2,and3dueto three dierenttypesof

satter-ing. Thenumerialalulationsare performed forthe

samestrutureasshowninFig. 1butnowweinrease

thedonordensity N

D;L andN

D;R

simultaneously. As

a onsequene, the eletron density is inreased. At

low eletrondensities, themobilityof the eletronsin

thelowestsubbandn=1inreaseswithinreasingthe

eletron (also donor) density. This is mainly due to

thesreeningeets andtheinreaseofthekineti

en-ergyof theondution eletronsonthe Fermi surfae.

Atthe onset ofthe oupationof theseond subband

n = 2, the abrup hange of the mobility results from

the interplay between the intersbband sattering and

theintersubbandoupling eetin thedieletri

fun-tion (whih enhanes the sreening and is more

ee-tiveforsmall subbandFermi energyE

F E

n

). When

therearetwoorthreesubbandsoupied,themobility

derease of the lower subbands is mainly indued by

theintersubbandsattering. Fortheonsidered

bak-ground aeptor onentration n

A = 10

15

m 3

, the

aeptorsattering is thedominantmehanism tothe

eletrontransport. Wealso notiethat thealloy

sat-teringbeomemorepronounedathigheletron

densi-ties.

In onlusion,wehavealulatedtheeletron

sub-bandmobilitiesfromtheself-onsistenteletroni

stru-tureoftheAlGaAswideparaboliquantumwells. The

numerialresultsshowsthat,fortheonsidered

stru-ture with a bakground aeptor onentration n

A =

10 15

m 3

, the mobility is dominated by the

satter-ing of these aeptors. Our results also indiate the

Figure 2. The transportmobility as afuntion ofthe

to-taleletrondensityforeletronsintherstthreesubbands

n =1 (solid urves), 2 (dash urves), and 3 (dash-dotted

urves). Themobilitiesresultfromtheionizeddonor

sat-teringonly(thin-urves),theionizeddonor+alloy

satter-ing, and the ionized donor+ aeptor+ alloy sattering

(thethik-urves)areplotted.

Aknowledgments This work was supported by

FAPESPandCNPq(Brazil).

Referenes

[1℄ E. G.Gwinn, R. M. Westervelt, P. F. Hopkins, A. J.

Rimberg,M.Sundaram,andA.C.Gossard,Phys.Rev.

B39,6260 (1989);T.Sajoto,J.Jo,M.Santos,andM.

Shayegen,Appl.Phys.Lett.55,1430(1989);K.Karrai,

H. D. Drew, H. W. Lee, and Shayegan, Phys.Rev. B

39,1426(1989).

[2℄ A.Wixforth,Surf.Si. 305,194(1994),andreferenes

therein;P.F.Hopkins,A.J.Rimberg,E.G.Gwinn,R.

M.Westervelt,M.Sundaram,andA.C.Gossard,Appl.

Phys.Lett.57,2823 (1990).

[3℄ G. Salis, P.Wirth, T. Heinzel, T. Ihn, K.Ensslin, K.

Maranowski,andA.C.Gossard,Phys.Rev.B59R5304

(1999),andreferenestherein.

[4℄ G.Q.Hai,N.Studart,andF.M.Peeters,Phys.Rev.B

52,8363(1995);G.Q.HaiandN.Studart,Phys.Rev.

B55,6708(1997).

[5℄ G. Q. Hai and N. Studart, Phys. Rev. B 52, R2245

(1995).

Imagem

Fig. 1 gives an example of the self-onsistent solu-
Fig. 2 shows the transport mobilities as a funtion

Referências

Documentos relacionados

The harateristis of multi-layered InAs/GaAs self assembled quantum dots (SAQDs) annealed af-.. ter the growth were here studied using a ombination of apaitane-voltage

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the