• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.25 número1

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.25 número1"

Copied!
8
0
0

Texto

(1)

w w w . s b f g n o s i a . o r g . b r / r e v i s t a

Original

Article

Nanoparticles

containing

curcuminoids

(

Curcuma

longa

):

development

of

topical

delivery

formulation

Cristina

M.

Zamarioli

a

,

Rodrigo

M.

Martins

b

,

Emilia

C.

Carvalho

a

,

Luis

A.P.

Freitas

b,∗

aEscoladeEnfermagemdeRibeirãoPreto,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

bFaculdadedeCiênciasFarmacêuticasdeRibeirãoPreto,NúcleodePesquisasemProdutosNaturaiseSintéticos,UniversidadedeSãoPaulo,RibeirãoPreto,SP,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received12July2014 Accepted3November2014 Availableonline11February2015

Keywords:

Solidlipidnanoparticles Beeswax

Pigskin Curcumin

a

b

s

t

r

a

c

t

SolidlipidnanoparticlesincorporatingCurcumalongaL.,Zingiberaceae,curcuminoidswereproducedby thehotmeltemulsionmethod.ABox–Behnkenfactorialdesignwasadoptedtostudythenanoparticles productionatdifferentlevelsoffactorssuchasthepercentageofcurcuminoids,timeof homogeniza-tionandsurfactantratio.Theoptimizednanoparticleswereincorporatedintohydrogelsforstability, drugreleaseandskinpermeationtests.Theaveragenanoparticlesizeswere210.4nm;thezeta poten-tialof−30.40±4.16;thepolydispersivitywas0.222±0.125.Theaverageencapsulationefficiencyof

curcuminandcurcuminoidswas52.92±5.41%and48.39±6.62%,respectively.Solidlipidnanocapsules

wereobtainedwithcurcuminloadvaryingfrom14.2to33.6%andtotalcurcuminoidsloadashighas 47.7%.ThetopicalformulationcontainingSLN-Curcuminoidsshowedgoodspreadabilityandstability whensubjectedtomechanicalstresstestremainedwithcharacteristiccolor,showednophase separa-tionandnosignificantchangeinpH.Asaresultofslowrelease,thenanoparticleswereabletoavoid permeationorpenetrationinthepigearepidermis/dermisduring18h.Thetopicalformulationis sta-bleandcanbeusedinfurtherinvivostudiesforthetreatmentofinflammatoryreactions,inspecialfor radiodermitis.

©2014SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Allrightsreserved.

Introduction

InthelastdecadethecurcuminoidsfromCurcumalongaL., Zin-giberaceae,werereportedinseveralmolecularsignalingpathways ofclinicalimportance(Goeletal.,2008;Dasetal.,2010;Mourtas etal.,2011).Theyhaveanti-inflammatory,antifungal, antimicro-bial,antioxidant and antiproliferative properties (Aggarwal and Harikumar,2009;Augustyniaketal.,2010;Irvingetal.,2011;Zhou etal.,2011),amongothers.ThemaincurcuminoidsfromCurcuma arecurcumin,desmethoxycurcuminandbisdesmethoxycurcumin, threebioactivesubstancescommonlyusedasspicesandcoloring agentsinfood.However,thesemoleculeshavepoorbioactivityand instabilityinneutralandalkalineaqueoussolutions(Tønnesenand Karlsen,1985;Yallapuetal.,2012)andhydrophilictopical formula-tions.Besides,whencurcuminoidsweresubjectedtolightexposure therewas30%degradationand1.8%lossunderoxygenactionin30 days.Despitetheirseveralutilitiesandlowtoxicity(Jayaprakasha etal.,2006),thecurcuminoidslowbioavailability(Gaoetal.,2011)

Correspondingauthor.

E-mail:lapfrei@fcfrp.usp.br(L.A.P.Freitas).

contributestorecentgrowthofinterestindevelopingnewcarrier systems(Nairetal.,2010).

Duetoanatomicalandphysiologicalcharacteristicsoftheskin, someingredientsmaynotacquirethedesiredactivitytopicallyand newdrugcarriersystemshavebeenusedtomodifythe perme-ation/penetration.AccordingtoMehnert andMader(2001),itis becomingevidentthatthedevelopmentofasingledrugisnolonger sufficientfortheevolutionoftherapy,giventheinsufficient con-centrationofthedrugduetoitslowabsorption,rapidmetabolism andelimination;hightoxicity incombinationwithotherfabrics andhighfluctuationinplasmalevelsduetounpredictable bioavail-abilityafterperioraladministration.

Lipid-basednanoparticlesystemsarecommonlyusedin topi-calapplications(Contrietal.,2011)andarepreparedwithsolid structuresatroomtemperatureoratbodytemperatureassociated withsurface-activeagentsandwaterlipids.AccordingtoOliveira (2008),lipophilicdrugswillhaveaneasierpenetration,giventhe characteristicsoftheplasmamembrane.Inthisregard,skin per-meationenhancingagentscanbeusedintheformulationsandcan reduceskinresistance(MartinsandVeiga,2002).

Over the past 10 years solid lipid nanoparticles (SLN) and nanostructuredlipidcarriers(NLC)throughmixturesoflipidsthat

http://dx.doi.org/10.1016/j.bjp.2014.11.010

(2)

acquire a specific molecular arrangement were produced, suf-feringa majoreffectofsurfactantsadded totheseformulations (Serraetal.,2009).Thiscombinationofsurfactantsisconsideredto improvestabilitybypreventingagglomerationoftheparticlesand retardingthetimeofpolymorphictransitionoflipidsto encapsu-latetheactiveingredient(Serraetal.,2009).

Hydrophilicmatrix systems are commonly used due to low productioncosts,acceptancebyregulatoryorgan,simplicityof for-mulation,productionfacility, capacitytoincorporatearange of substanceswithextendedsolubilityrange(Lyraetal.,2007),andin general,haveathixotropicorpseudoplasticrheologicalbehavior, duringapplicationbecomingmorefluid,facilitatingthespreading andrecoveringtheinitialviscosityuponendingtheapplication, whichpreventstheproductdrips(Martin,1993).Theseproducts tendsto have a longershelf life, becauseduring storage (dur-ingwhich time theproductremains at rest),presents constant viscosity,whichmakesdifficulttoseparatingtheformulation con-stituents.

Hydrophilicgelshavebeendemonstratedtobeadequatefor incorporation of SLN (Jenning et al., 2000). By reducing trans-epidermallossofwaterandimprovingskinhydration,anincrease in penetration and percutaneous absorptionhas beenreported (Jenningetal.,2000;Wissingetal.,2001).Otheradvantageofthis systemistopromotethecontrolledreleaseofsubstances, reduc-ingtheirsystemicabsorptionandactingasaphysicalsunscreen (AttamaandMuller-Goymann,2008).Thesepropertiesareofgreat importancefortheprotectionofskinfrompatientsundergoing radiotherapytreatment.

Theaimofthisresearchwastodevelopsolidlipidnanoparticles (SLN)containingcurcuminoidsusinga naturalwaxas encapsu-latingmatrix andtodevelop andcharacterizeahydrophilicgel, fortopicalapplication.Thenanoparticlepreparationwasstudied applyingaBox–Behnkendesignandthehydrogelstabilityandex vivoskincurcuminoidpermeation/penetrationwasevaluated.

Materialsandmethods

Plantandothermaterials

ThecurcuminoidconcentratewaspurchasedfromCHR (Chris-tianHansenA/S,Denmark)andpharmacognosticallycharacterized, andasamplecounterproofwasdepositedatthe“Herboteca LADI-FARP”fromtheFCFRP/USPwithRegistrynumberCP01/14-S.The powdermoisturecontent,total ashcontent,swellingindex and sizedistributionweredetermined accordingtothe methodolo-giesdescribedinFarmacopeiaBrasileira(2010).Theresultswere expressedasmean±standarddeviationofthreereplicates.

Analyt-icalgradecurcuminasastandardforquantificationpurposewas purchasedfromSigma(Sigma–Aldrich,St.Louis,MO,USA).

Quantificationofcurcuminandcurcuminoids

Forcurcuminandtotalcurcuminoidcontentdetermination a HPLCmethodwasdeveloped.Briefly,anUltimate3000(Thermo FisherBrasilLtda,São Paulo,Brazil) HPLCwasusedwitha C18 Alcromcolumn(PhenomenexLtda,SãoPaulo,Brazil).Themobile phasewas50:50acetonitrileandacidifiedwater(1%citricacid)at pH3.5,flowrateof1.0ml/min.TheUV–visdetectorwassetupto 425nm.50␮lsampleswereinjected(Pauluccietal.,2013).

Thecurcuminstandard (Sigma–Aldrich, St.Louis,USA) solu-tion was prepared with 1mg of curcumin in 5ml of 50:50 acetronitrile:water (1% citric acid). Consecutive dilutions were made to obtain seven solutions at concentrations from 25 to 2500ng/ml,whichwereinjectedtopreparetheanalyticalcurve. Themethodlinearityandselectivitywerealsoevaluated.Samples

ofdrug(curcuminoids),unloadednanocapsules,curcuminloaded nanocapsules,pigearextract,hydrophilicgel,andgelcontaining nanocapsulesweretestedforselectivity.

PreparationofsolidlipidnanoparticlesSLN

SLNwerepreparedbyhotmeltemulsiontechnique(Martins, 2014; Zamarioli, 2014) employing a high-shear homogenizer. Briefly,waterwasheatedat70◦CwithTween80(polyethylene gly-colsorbitanmonooleate)andlecithin(phosphatidylcholine),prior toadditionoftheoilyphase.Thebeeswaxandcurcuminoidswere heatedandhomogenizedatsametemperature.Themicroemulsion wasproducedbydroppingtheoilyphaseinaqueoussolutionwith theaidofaglasssyringe.Thedispersionwassubmittedtohighshear homogenizationat70◦CusinganUltra-TurraxT25(IKA®, Wilming-ton,USA)at20,000rpmduring20min.Thelipidnanoparticleswere solidifiedbycoolingdownthedispersion.Allexperimentswere keptinanicebathwithmagneticstirringafterhomogenizationfor 10min.

Factorialdesign

TheSLNproductionwasstudiedusingaBox–Behnkenfactorial design(Boaxetal.,1978)forthreefactorsatthreelevels, result-inginfifteenexperiments.Table1showsthestudiedfactorsand therangesofeachone:thepercentageofcurcuminoidsinbeeswax nanoparticles,%C:Bw;thehomogenizationtimeusingTurrax,HT andtheweightproportionoflecithintoTween80,L:T.Thechoices oftherangesofthefactorsshowninTable1werebasedon prelim-inaryexperimentsandtherangeofproportionoflecithintoTween 80wasbasedonthehydrophilic–lipophilicbalance(HLB).

CharacterizationofSLN

Theparticlesize(Dp)distributionandpolydispersivityindex (PdI) were obtained by photon spectroscopy (PCS) employing a Zetasizer Nano Series (Malvern Instruments Limited, Worcs, UK). Zeta potential was assessed by determining the particle electrophoreticmobility using thesameapparatus. These mea-surementswereperformedat25◦Cusingwaterasthedispersing mediumanddilutionofsuspensionsofnanoparticlesataratioof 1:100inultrapurewater(MilliQ,MilliporeInc.,USA).

Morphology

ThesurfaceappearanceandshapeofSLNweredeterminedby anatomicforcemicroscope(AFM)modelSPM-9600(ShimadzuCo., Kyoto,Japan).ThedispersionofSLNwasdiluted(1:100)using ultra-purewater(Milli-Q,MilliporeInc.,USA)andspreadontothinmica plates.

Encapsulationefficiencyanddrugload

(3)

Table1

Levelsandcodificationofvariablesstudied.

Factors Level(−1) Level(0) Level(+1)

X1–percentageofcurcuminoids/beeswax 5% 10% 15%

X2–timeinTurrax*inmin 10 15 20

X3–proportionofLecithin/Tween80 0.5 1.0 1.5

to a cycle of centrifugation at 9300×g for 20min. The super-natantwasaspirated,filteredandplacedinvialsforcurcuminand curcuminoidquantification.Thelatterwereconsideredtobethe curcuminoidsthatwereencapsulatedintheSLN.Theencapsulation efficiency,%EE,wascalculatedbyEq.(1).

%EE=(CC/CT+CC)×100 (1)

whereCEncistheamountofcurcuminoidsinsidetheSLNandCT isthetotalamountofcurcuminoidsaddedtotheformulation.

Preparationoftopicalformulation

Inordertocontemplatetheobjectiveofthisproject,wechoseto prepareaknownbaseformulation,thegelNatrosol®(ViaPharma Ltda,SãoPaulo,Brazil)ataconcentrationof1.5%.Theincorporation ofSLNdispersionsintogelcomponentswasperformedatroom temperature,asbeeswaxbecomessoftenedataround50◦C.

Invitroreleaseprofile

Briefly,analiquotof20␮loftheSLNdispersion correspond-ingto59.2mgofcurcuminoidswasdispersedinphosphatebuffer, distributed in fivetubes and keptatroom temperature.Atthe predeterminedintervals,thetubeswerecentrifugedat200×gfor 5min(Bishtetal.,2007)toseparatethecurcuminoidscrystals pre-cipitatedafterreleasefromSLN.Aftercentrifugation,thedispersion wasaspiratedandplacedintonewtubesforsubsequent centrifu-gation,andagainthecurcuminoidremainingcrystalsdissolvedin 1mlofmethanol.Thisvolumewasfiltered(0.45␮M)andanalyzed inHPLCforquantification.

Exvivopermeationstudy

ThepermeationtestswereperformedusingFranzcell diffu-sion(1.77cm2 of area) withpigear skin.Thepig earskinwas obtainedfromslaughterhouseoverseenbytheMinistryof Agri-culture,locatedinthemunicipalityofIpuã(OlhosD’ÁguaIndústria eComérciodeCarnesLtda,Ipuã,SP,Brasil).

Theexperimentswereperformedwithsixcells:(1) onecell forthecontrol groupwithcurcuminoids solution;(2) two cells withNatrosolgelcontainingcurcuminoidsand(3)threecellswith thegelcontainingnanoencapsulatedcurcuminoids(0.5gofgelin each).Forthereceptorsolution0.2Mphosphatebufferwasused with20%ethanol(Suwantongetal.,2007),pH7.5,maintainedat 37±0.5◦Cinthermostaticbathwithcontinuousstirringfor18h. Sampleswerewithdrawnfromthereceptorcompartmentafter0, 15,30and60minandat2,4,6,8,10,12,14,16and18hofassay andimmediatelyquantifiedbyHPLC.

Afterthe18h, theskinwasremoved fromFranzapparatus, dried with a fine cloth and repetitive (n=15) removal of the stratumcorneumwasperformedwithadhesivetape(3M,Sumaré, SãoPaulo,Brazil)19mm×50m.ThetapeswereplacedinFalcon

tubes(50ml)containing0.2Mphosphatebufferwith20%ethanol (Suwantongetal.,2007),agitatedinavortexmodelAT56(Phoenix) for3min,filteredthrougha0.45␮Mmembrane(Millipore Corpo-ration,Billerica,MA,USA)andquantifiedinHPLC.

Retentionintheepidermisanddermis

TheepidermisanddermisweremincedandplacedinFalcon tube(50ml)containing0.2Mphosphatebufferwith20%ethanol (Suwantongetal.,2007),subjectedtohighshearagitation(Turrax) at3000rpmfor1min;sonicatedinanultrasoundbathModelUSC 1400(UltrasonicCleaner)for30minandcentrifugedfor10minat 2790×ginacentrifugemodelHT–MCD2000(BiosystemsLtd., Curitiba,Brazil).Thesolutionobtainedwasfiltered(0.45␮M)and quantifiedinHPLC.

StabilityofgelformulationwithSLN

Preliminarily,theNatrosol®gelcontainingSLN-Curwas sub-mitted tocentrifugation at 2790×g for 30min (Anvisa, 2004). Following,theformulationwassubjectedtothermalstresscycles alternating24hintheovenat40±2◦Cand24hintherefrigerator at 5±2◦C. Attheend of each cycle, organolepticand physico-chemicalcharacteristicsofthegelwereevaluated.ThepHofthe sampleswasobtainedusingaDM20pHmeter(Digimed,SãoPaulo, SP,Brazil).Thisstudywasperformedinsixcompletecycles.Also, organolepticandpHevaluationofgelcontainingtheSLN-Curwas performedafterthreemonthsofstorage.Sampleswerekeptattwo testtemperatures(25±2◦Cand5±2C)bothintheabsenceand presenceoflight.

Statistics

ToexaminethisplanMinitab16software(MinitabInc.,State College,PA)wasused,withitsfeaturesof descriptivestatistics, experimentaldesign(DOE)andresponsesurface;togeneratethe response surface graphs, Statistica version 12 (StatSoft, South America,SãoCaetanodoSul,SãoPaulo,Brazil)wasused. Descrip-tive analyses were mean, standard deviation, minimum, and maximum.Confidenceintervalwasestablishedfortheanalysisof thereleaseprofileofcurcuminoidsfromSLNtakenandvariance analysisinallexperimentaldesigns,withp<0.05.

Resultsanddiscussion

The drug raw material was characterized according to FarmacopeiaBrasileira(2010)withallassaysmadeintriplicate. Thetotalashcontentwas0.10±0.01%,andmoisturecontentwas

0.75±0.02%.MeanparticlesizeD50was30.8␮m,whileD10and D90were13.7and168.2␮m,respectively.Sizedistributionspan was0.20.Thecontentsofcurcumin,demethoxycurcuminand bis-demethoxycurcumininthedrugweredeterminedbyHPLCusing thecurcuminstandardfromSigmaandshowedtobe76.7,19.4and 3.9%,respectively.

(4)

0.0

8.90 3

Intensity (mAU) 2

1

9.98 11.21

11.28 1 10.33

3 2

A

B

C

1

11.67 12.97

2.0 4.0 6.0 8.0

Time (min)

10.0 12.0 14.0 16.0 18.0 20.0

Fig. 1.Chromatograms obtained for: (A) Curcumin analytical standard (Sigma–Aldrich); (B) drug containing the three curcuminoids used as raw material;(C)sampleextractedfrompigskinafterpenetration/permeationtest.

TheBox–Behnkendesignwasidealizedafteraseriesofprevious experiments, varying the concentrations of beeswax, curcumi-noids, surfactants, temperature, duration of shearing, mode of curcuminoid addition and others. The results showed that the HLB(hydrophilic/lipophillicbalance)isveryimportantduringthe nanocapsulespreparationandwasconsideredinthefurtherwork. TheBox–Behnkendesign appliedcanbeseenin Table1,which showsthefactorsstudiedandtheirlevels.Theresultsof nanoparti-clesizes,polydispersivity(PdI)andzetapotentialforallthefifteen experimentalconditionsareshowninTable2.Ascanbeseenin Table2,thePdIvariedwidelyfrom0.128to1.000.HighvaluesofPdI mayinterferewiththereliabilityoftheestimatedsizeofparticles (Zetasizer,2009).TheMalvernZetasizer(2009)softwareapplies thecumulativeanalysismethod,andcalculatesthezeta-average (size)andpolydispersivityfromthecoefficientsofthevirial equa-tion.Whencumulativeanalysisisnotapplicable,thePdIvaluesare above0.100andneitherzeta-averagenorPdIvaluesarereliable. Basedonthis,thediameterswereextracteddirectlyfromthe fre-quencydistributionofsizes,i.e.,fromthecentervalueofthepeak withhigherintensity.

ThreeexamplesofthesizedistributionscanbeseeninFig.2. Fig.2Apresentsthesignalintensitydistributionforexperiment2 fromTable1,wheretheSLNwaspreparedwith15%of curcum-inoids,20minathighshearhomogenizerandratiooflecithinto Tween80equalto1.0.Asshowninthisplot,thereisonlyonepeak withareasonablenarrowdistributionandsizesvaryingfrom100to 200nm.Dependingontheconditionsofpreparationtheprofileof

thedistributioncanchangeconsiderably,asseeninFig.2B,which showsthesizedistributionforexperiment5fromTable1.Inthis processingconditiontherearetwowelldefinedpeaks,orabimodal distribution:thefirstpeakwithsizefrom20to80nmandthe sec-ondandlargerpeakwithsizefrom100to600nm.Inthiscondition, thereisalsoaverysmallpeakappearingatsizesabove7000nm. Fig.2Cshowsathirdinterestingresultinaunimodaldistribution showingsizesfrom150to550nm(experiment11inTable1).These threeplotsareveryillustrativeofthestrongeffectofexperimental conditionsonthenanoparticlessizedistributions,andthe impor-tanceofusingmultivariatetoolsforeffectselucidation.Sinceour analysismustbebasedontheintensitydistribution,onlythelargest peaksweretakenintoconsiderationformeansizedetermination atthesituationswheretherearetwoormorepeaks.

Thevaluesofmeansizes,polydispersivityandzetapotentialfor allfifteenexperimentsareshowninTable2.Consideringall exper-imentsinTable2,anaveragedparticlesizewas210.4±146.6nm,

withminimumandmaximumof32.7nmand481.9nm, respec-tively. Theaveraged zetapotentialwas−29.0±4.2mV,varying

froma minimum of -35.3mVto a maximumof −21.2mV.The

averagedPdI was0.546±0.300,witha maximumof 1.000and

minimumofthe0.128,butonemustrememberthatthisPdIwas calculatedbyMalverncumulativeanalysisandcanonlybeused forqualitativepurposes(Zetasizer,2009)andnotforquantitative comparison.

Theanalysisofvariance,ANOVA,byresponsesurface methodol-ogyresultedinafewsignificanteffectsofthefactorsstudiedonDp, PdIandZP.TheParetoplotsinFig.3bringtheprobabilitiespforall thelinear,quadraticandinteractioneffectsfortheBox–Behnken designs.Fig.3AshowstheParetoplotforDp,whichindicatesthat onlythelineareffectoftheratiooflecithin/Tween,L:Twas sig-nificanttoSLNsizesat5%(p<0.05).Theotherfactorsand their interactionswerenotsignificantwithintheconfidenceintervalof 95%.Thepolynomialequationtofitthesurfaceresponsehasonly X3asavariable,aspresentedinEq.(1).

Dp=144.5+143.6(X3) (1)

Theeffectofsurfactantsratio,L:T,onDpwastheunique signif-icanceincurcuminoids/beeswaxSLN.Otherauthors(yetforJebors etal.,2010)reportednoinfluenceofagitationspeedonthe parti-clesize,asobservedinthiswork,andthiscanbeattributedtothe thermodynamiceffectofsurfactantadditionasbeingprimordial inemulsionformation.Besides,theuseofsmallglasswareinthe labscaleiscommonlyassociatedtostrongwalleffects,whichmay causethemultimodal sizedistributions,whichwasobservedin Fig.2B,andfourotherexperimentalconditionsinthiswork.A com-monpracticeistofilterthesamplestocutoffundesiredsizesusing 0.22and0.45mmfilters.Inthiswork,however,thedecisionforno filtrationaimedtostudytheactualimplicationsofthemethodof productionandtherealinterferenceofthefactorsanalyzed.

ForthePdIonlythelineareffectsof%C:Bw(X1)andL:T(X3)were significantat theadoptedsignificance level(p<0.05).Theother factorswerenotsignificantwithintheconfidenceintervalof95%, sotheywerenotkeptinthepolynomialfittingpresentedinEq.(2).

PdI=0.398+0.201(X1)−0.309(X3) (2)

ThechangesinlecithinconcentrationwhenL:Tisvariedmaybe relatedtoincreasedpolydispersityoftheparticles,sincethereisa possibleformationofmultiplelayersoflecithinonthesurfaceof theSLNortheformationofothercolloidalstructures(Jeborsetal., 2010).

(5)

Table2

Size,PdIandzetapotentialofSLN-Cur.

Exp. %Curcuminoids/beeswax TimeinTurrax Proportionlecithin/Tween80 Size(nm) Peakintensity(%) PdI Zeta(mV)

1 5 20 1.0 405.5 95.1 0.429 −21.2

2 15 20 1.0 128.9 100.0 0.627 −21.4

3 5 10 1.0 201.2 91.5 0.373 −28.7

4 15 10 1.0 62.2 100.0 1.000 −33.4

5 5 15 0.5 247.6 82.7 0.543 −33.3

6 15 15 0.5 45.0 100.0 1.000 −31.3

7 5 15 1.5 374.9 100.0 0.179 −28.9

8 15 15 1.5 481.9 100.0 0.504 −27.1

9 10 20 0.5 32.7 100.0 1.000 −29.1

10 10 10 0.5 62.4 100.0 0.972 −34.0

11 10 20 1.5 297.0 99.0 0.236 −28.0

12 10 10 1.5 382.9 100.0 0.128 −35.3

13 10 15 1.0 159.4 100.0 0.461 −29.3

14 10 15 1.0 150.2 100.0 0.361 −25.0

15 10 15 1.0 123.9 100.0 0.371 −29.1

A

B

C

0 0 0

5 10 15 20 25

2 4 6 8 10 12 14

10

10

Intensity %

100 1000 10000 10 100 1000

Size (nm)

10000 10 100 1000 10000

20 30 40

Fig.2. Sizedistributionbyintensityofexperiments2,5and11(A–C).

withintheconfidenceintervalof95%,sotheywerenotkeptinthe polynomialfitpresentedinequation,

ZP=−27.80+3.96(X2)−3.89(X3)2 (3)

The magnitude of the ZP can be associated with the ratio of lecithin usedin theformulations and interactionwithother components such as the Tween, which is a non-ionic surfac-tant.

Encapsulationefficiency

Theencapsulationefficiency,EE,variedfrom41.4to62.0%for curcuminandfrom31.0to58.78%fortotalcurcuminoids.The aver-agedcurcuminencapsulationefficiencyforthefifteenexperiments was52.92±5.41%andfortotalcurcuminoids,48.39±6.62%.The ANOVAbyresponsesurfacemethodologyshowedthatonly%C:Bw affectedEEatthesignificancelevelof5%.Fig.4showsthecontour plotofcurcuminencapsulationefficiencyinbeeswaxnanoparticles asafunctionofhomogenizationtime,HT,andpercentcurcumin

content,%C:Bw.Althoughliteraturedata(Yallapuetal.,2013) indi-catethatcurcuminencapsulationcanbehigherforothercarriers, EEabove50%maybeconsideredgoodforalipophilicdrugandthe EEvariesstronglydependingondifferentsystemsandprocesses. Apolynomialequationwasfittedtothedateof%EEforcurcumin andisgiveninEq.(4).

%EE=53.30+5.60(X1) (4)

Morphologicalanalysis

Fig. 5 shows the morphology of the SLN by atomic force microscopy, AFM.Fig. 5A presentsthetopographic view,while thefrontalviewisshowninFig.5B.Itwasevidentthatparticles weresphericalinshapeandhomogeneouslydistributedwithsize rangedbetween52nmand101nm,smallerthanthatmeasuredby dynamiclightscattering.

A

B

P<0.05 P<0.05

HT x L:T

HT x L:T

HT x HT HT x HT

L:T x L:T

L:T x L:T HT x C:Bw

HT x C:Bw

C:Bw x C:Bw C:Bw x C:Bw

C:Bw x L:T

C:Bw x L:T

C:Bw

C:Bw

L:T

L:T

0.00 0.10 0.004

0.074 0.112

0.136 0.162

0.431 0.524

0.663

0.009 0.042

0.328 0.330

0.449 0.680

0.893 0.953

0.972 0.741

*

*

*

0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.00 0.20 0.40 0.60 0.80 1.00

HT

HT

Probability, p

(6)

5.0 10.0 12.5 15.0

HT (min)

17.5 20.0

7.5 10.0 12.5 15.0

% C:Bw

50.0 55.0

57.5 52.5

47.5

Fig.4.Contourplot ofencapsulationefficiency,EE%,ofcurcumininbeeswax nanoparticlesasafunctionofhomogenizationtime,HT,andpercentcurcumin content,%C:Bw.Onlytheeffectof%C:Bwissignificantatp<0.05.

Releaseprofile

Allthesamplesofnanocapsulestestedshowedasustainedbut notlinearrelease(Fig.6),asseenintheliteratureasafirstorder kinetics(Nayaket al.,2010; Pugliaet al.,2012).Approximately 50–60%ofcurcuminwasreleasedafter2hofexperiment. How-ever,around40%ofcurcuminoidsremainedunreleasedafter10h ofexperiment.Nayaketal.(2010)found,usingthesame method-ology,thatafter12hofexperiment70%ofcurcuminoidshadbeen released,andwithin24hofreleasewasaround80%.The extended-releaseprofilemayindicateinteractionsbetweenthelipidandthe drugandamorecentrallocationofthisdrugintheSLN(Küchler etal.,2009),beyondtheinfluenceofthesurfactantsused.

Preliminarystability

Theformulationdidnotundergophaseseparationwhen sub-jectedtomechanicalstresstestbycentrifugation(Anvisa,2004). Thegelremainedhomogeneous,withbrightandlightyellowcolor, characteristicodorandnophaseseparationduringthemechanical stressat3000rpmfor30min.Fig.7showsthepHvaluesmeasured attheendofeachthermalstresscycleof24hat40◦Cand24hat 5◦C.ThepHremainedprettystableoverthetestperiod(Fig.8)and ithasundergoneminorchangesthatwerenotsignificantly differ-entthanthepHofthegelinitiallymade.ThepHofthegel,slightly below6.0,isphysiologicallyadequatefortopicaluseandalso ade-quateforchemicalstability,sincecurcuminoidsareunstableatpH

0 20 30 40 50 60 70 80

0.5 1 2 3 6 12 16

Time (h)

% curcumin released

Fig.6.Curcuminoidreleaseinphosphatebuffer(pH7.4)solutionafter16-htest. Experimentsmadeinsextuplicate.

0.0

pH (-)

Cycles (48 h)

1st 2nd 3rd 4th 5th 6th

1.0 2.0 3.0 4.0 5.0 6.0

Fig.7. pHofhydrogelcontainingthecurcuminSLNbasedonpHvaluesaftersix 48hstresscyclesofheating(40◦Cfor24h)andcooling(5Cfor24h).

above7(TønnesenandKarlsen,1985;RusigandMartins,1992). Anotherstabilitytestwasrunfor90days,withgelsamplesstored attesttemperaturesof25±2◦Cand5±2C,intheabsenceor pres-enceoflight.Theorganolepticevaluation ofthegelshowedno significantchangesinappearancesandnophaseseparation.The pHofthegelcontainingtheSLN-Curdidnotchangesignificantly afterthreemonthsifcomparedtothebeginningofthetests.The pHwas5.48forthegelkeptat25±2◦Cinabsenceoflight,5.13for

thesampleatthesametemperaturebutunderdaylightand5.66for thegelstoredat5±2◦C.Thecentrifugationtestwasalsoperformed andthethreesamplesdidnotundergophaseseparation.

Exvivopenetrationandpermeationstudy

TheHPLCanalysesofextratumcorneumandepidermis+dermis afterthe18hexperimentsinFranzcellsareshowninFigs.8and9, respectively.Therewasnopermeationofcurcuminoidsinpigear skin during any of the sixplicates, which indicate a controlled releasefromSLNingelwithreleasetimelongerthan18h.Due

A

B

1.00

1.00

0.50 0.50

0.00

(7)

40.0

30.0

20.0

10.0

0.0

Absorbance [mAU]

–10.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

Tape NLS 3

Tape NLS 2

Tape NLS 1 Tape Cur 3 Tape Cur 2

Tape Cur 1

Time [min]

Fig.8. Chromatogramsobtainedfromsamplesofextratumcorneumafterthepenetration/permeationtests.Aimingforquantificationofcurcuminoidsaftertapestripping.No peaksofcurcuminoidsweredetected.(Note:TriplicatetapesoftheskinexposedtothegelwithfreecurcuminoidsandtapeoftheskinexposedtogelwithSLN-curcuminoids.)

0.0 –10.0

–5.0 0.0 5.0 10.0 15.0 20.0

Absorbance [mAU]

2.5 5.0 7.5 10.0

Time [min]

12.5 15.0 17.5

Epi/Der NLS 3 Epi/Der NLS 2 Epi/Der NLS 1

Epi/Der Cur 3 Epi/Der Cur 2 Epi/Der Cur 1

20.0

Fig.9.Chromatogramsobtainedfromsamplesofpigearskinafterthepenetration/permeationtests.Aimingforquantificationofcurcuminoidsinepidermisanddermis. Nopeaksofcurcuminoidsweredetected.(Note:TriplicatetapesEpidermis+dermisexposedtothegelwithfreecurcuminoidsandepidermis+dermisexposedtogelwith SLN-curcuminoids.).

tolimitations imposedbytheuseofexvivobiologicalmaterial, thepermeationexperimentcannotbelongerthan18h,sincethe pigearskinundergoesstrongchangesafterthisperiodat37◦C (Sartorellietal.,2000).

Penetrationofcurcuminorcurcuminoidswasnotobservedfor anyformulationintriplicate,e.g.,gelcontainingtheSLN-Curandgel withfreecurcuminoids,whichcorroborateswiththeideaofvery slowreleasefromnanocapsules.Theresultscorroboratethe state-mentthatnanotechnologycanmodifythepenetration/permeation ofsubstanceandcontroltheirrelease,increasingtheresidencetime ontheskinsurface(Luengoetal.,2006;Guterresetal.,2007;Cevc andVieri,2010).

Sincethegoalofthisworkwastodevelopananti-inflammatory topicalformulationforradiodermitis,itisadequatethat curcumi-noidsshowaslowreleaseandthatSLN-Curdoesnotpenetratein normalskin,behaviorthatcanbesignificantlychangedinskin dam-agedbyradiotherapybuns.Theresultisstimulatingandshouldbe confirmedinfutureinvivotestsfornormalandinjuredskin,since penetration/permeationinvivocanbeconsiderablydifferentfrom exvivobecauseofshearcausedbybodymovementandalsoby skininjurescausedbyradiation(radiodermitis),whichmayfavor thepenetrationofcurcuminoids.

Conclusions

Beeswax showed tobe an excellent natural carrier for cur-cuminoids nanoencapsulation, resulting in nanocapsules with adequatesizeand zetapotential.Encapsulationefficienciesand drugloadinnanocapsulesalsodemonstratethattheprocess devel-oped is promising. The application of factorial design tostudy

the preparation process for nanocapsules showed tobe a very importanttool,allowingestablishingtherelationshipsamongthe factorsandqualityattributes.Hydrophilicgelcontainingsolidlipid nanocapsulesshowedtobestableinpreliminarytestsandthat pen-etration/permeationinpigskincouldnotbedetectedin18h.Assay inFranzcellsusingpigearskinshowednopenetration/permeation ofnanoencapsulatedcurcuminoids.Theresultsarestimulatingfor futureinvivotestsofanti-inflammatoryactivityinradiodermitis treatment.

Authors’contributions

CMZ(MScstudent)wasresponsibleformostofexperimental work(nanocapsules,gel andcharacterization); RMMdeveloped thenanoencapsulationtechniqueandcontributedinalllaboratory workandchromatographicanalysis.ECCidealizedtheworkand contributedtocriticalreadingofthemanuscript.LAPFdesigned thestudy,supervisedtheexperiments,criticallyreadanddefined thefinalversionofthemanuscript.Alltheauthorshavereadthe finalmanuscriptandapprovedthesubmission.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

(8)

References

Aggarwal,B.,Harikumar,K.B.,2009. Potentialtherapeuticeffectsofcurcumin, theanti-inflammatoryagent,againstneurodegenerative,cardiovascular, pul-monary,metabolic,autoimmuneandneoplasticdiseases.Int.J.Biochem.Cell Biol.1,40–59.

Anvisa,2004.GuiadeEstabilidadedeProdutosCosméticos.In:MinistériodaSaúde. AgênciaNacionaldeVigilânciaSanitária,1sted.Anvisa,Brasília(SérieQualidade emCosméticos,1).

Attama,A.A.,Muller-Goymann,C.C.,2008.Effectsofbeeswaxmodificationson thelipidmatrixofsolidlipidnanoparticlescrystallinity.ColloidsSurf.A315, 189–195.

Augustyniak,A., Bartosz,G.,Cipak,A.,Duburs,G.,Kov L’Ubica, H.,Luczaj,W., Majekova,M.,Odysseos,A.D.,Rackova,L.,Skrzydlewska,E.,Stefek,M.,Strosov, M.,Tirzitis,G.,Venskutonis,P.R.,Viskupicova,J.,Vraka,P.S.,Zarkovi,N.,2010.

Naturalandsyntheticantioxidants:anupdatedoverview.FreeRadic.Res.44, 1216–1262.

Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., Maitral, A., 2007. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novelstrategyforhumancancertherapy.J. Nanobiotechnol.,http://dx.doi. org/10.1186/1477-3155-5-3.

Box,G.E.P.,Hunter,W.G.,Hunter,J.S.,1978.StatisticsforExperimenters.JohnWiley &Sons,NewYork.

Cevc,G.,Vieri,U.,2010.Nanotechnologyandthetransdermalroute.Astateofthe artreviewandcriticalappraisal.J.Control.Release141,277–299.

Contri,R.V.,Fiel,L.A.,Pohlmann,A.R.,Guterres,S.S.,Beck,R.C.R.,2011.Transportof substancesandnanoparticlesacrosstheskinandinvitromodelstoevaluate skinpermeationand/orpenetration.In:Beck,R.C.R.,Guterres,S.S.,Pohlmann, A.R.(Eds.),NanocosmeticsandNanomedicine.,pp.3–35.

Das, R.K., Kasoju, N., Bora, U., 2010. Encapsulation of curcumin in alginate–chitosan–pluronic compositenanoparticles for delivery to cancer cells.Nanomed.Nanotechnol.6,153–160.

Farmacopeia Brasileira, 2010. Ministério da Saúde. Agência Nacional de Vig-ilância Sanitária, Brasília http://www.anvisa.gov.br/hotsite/cdfarmacopeia/ pdf/volume1%2020110216.pdf(accessedSeptember2011).

Gao,Y.,Li,Z.,Sun,M.,Guo,C.,Yu,A.,Xi,Y.,Cui,J.,Lou,H.,Zhai,G.,2011. Prepara-tionandcharacterizationofintravenouslyinjectablecurcuminnanosuspension. DrugDeliv.18,131–142.

Goel,A.,Kunnumakkara,A.B.,Aggarwal,B.B.,2008.Curcuminas“Curecumin”:from kitchentoclinic.Biochem.Pharmacol.75,787–809.

Guterres, S.S., Alves, M.P., Pohlmann, A.R., 2007. Polymeric nanoparticles, nanospheresandnanocapsulesforcutaneousapplications.DrugTargetInsights 2,147–157.

Irving,G.R.,Karmokar,A.,Berry,D.P.,Brown,K.,Steward,W.P.,2011.Curcumin:the potentialforefficacyingastrointestinaldiseases.BestPract.Res.Clin. Gastroen-terol.25,519–534.

Jayaprakasha,G.K., Rao,L.J.,Sakariah,K.K.,2006. Antioxidantactivitiesof cur-cumin, demethoxycurcumin and bisdemethoxycurcumin. Food Chem. 98, 720–724.

Jebors,S.,Leydier,A.,Wu,Q.,Ghera,B.B.,Malbouyre,M.,Coleman,A.W.,2010.Solid lipidnanoparticles(SLNs)derivedfrompara-acyl-calix[9]-arene:preparation andstability.J.Microencapsul.27,561–571.

Jenning,V.,Gysler,A.,Schafer-Korting,M.,Gohla,S.H.,2000.VitaminAloadedsolid lipidnanoparticlesfortopicaluse:occlusivepropertiesanddrugtargetingto theupperskin.Eur.J.Pharm.Biopharm.49,211–218.

Küchler,S.,Abdel-Mottaleb,M.,Lamprecht,A.,Radowski,M.R.,Haag,R., Schäfer-Korting,M.,2009.Influenceofnanocarriertypeandsizeonskindeliveryof hydrophilicagents.Int.J.Pharm.377,169–172.

Luengo,J.,Weiss,B.,Schneider,M.,Ehlers,A.,Stracke,F.,König,K.,Kostka, K.-H.,Lehr,C.M.,Schaefer,U.F.,2006.Influenceofnanoencapsulationonhuman skintransportof flufenamicacid. SkinPharmacol. Appl.SkinPhysiol. 19, 190–197.

Lyra,M.A.M.,Soares-Sobrinho,J.L.,Brasileiro,M.T.,Roca,M.F.L.,Barraza,J.A.,Viana, O.S.,Rolim-Neto,P.J.,2007.Sistemasmatriciaishidrofílicosemucoadesivospara liberac¸ãocontroladadefármacosLat.Am.J.Pharm.26,784–793.

Martin,A.N.,1993.PhysicalPharmacy:PhysicalChemicalPrinciplesinthe Pharma-ceuticalSciences,2nded.LippincottWilliams&Wilkins,Philadelphia,PA,USA, pp.622.

Martins,M.R.F.M.,Veiga,F.,2002.Promotoresdepermeac¸ãoparaaliberac¸ão trans-dérmicadefármacos:umanovaaplicac¸ãoparaasciclodextrinas.Rev.Bras. Farmacol.38,33–54.

Martins,R.M.,2014.Influênciademicroenanopartículaslipídicassólidasna eficiên-ciadeformulac¸õesfotoprotetorasbioativas.TesedeDoutorado,Faculdadede CiênciasFarmacêuticasdeRibeirãoPretodaUniversidadedeSãoPaulo,Ribeirão Preto,pp.181.

Mehnert,W.,Mader,K.,2001.Solidlipidnanoparticles:production,characterization andapplications.Adv.DrugDeliv.Rev.47,165–196.

Mourtas,S.,Canovi,M.,Zona,C.,Aurilia,D.,Niarakis,A.,LaFerla,B.,Salmona,M., Nico-tra,F.,Gobbi,M.,Antimisiaris,S.G.,2011.Curcumin-decoratednanoliposomes withveryhighaffinityforamyloid-␤1-42peptide.Biomaterials32,1635–1645.

Nair,H.B.,Sung,B.,Yadav,V.R.,Kannappan,R.,Chaturvedi,M.M.,Aggarwal,B.B., 2010.Deliveryofantiinflammatorynutraceuticalsbynanoparticlesforthe pre-ventionandtreatmentofcancer.Biochem.Pharmacol.80,1833–1843.

Nayak,A.P.,Tiyaboonchai,W.,Patankar,S.,Madhusudhan,B.,Souto,E.B.,2010.

Curcuminoida-loadedlipidnanoparticles:novel approachtowards malaria treatment.ColloidSurf.B81,263–273.

Oliveira,R.C.S.,2008.Desenvolvimento,formulac¸ãoeavaliac¸ãodesistemasde libertac¸ãotransdérmicaincorporandosistemasternáriosdecomplexac¸ão(Tese deDoutorado).UniversidadedoPorto,Portugal.

Paulucci,V.P.,Couto,R.O.,Teixeira,C.C.C.,Freitas,L.A.P.,2013.Optimizationofthe extractionofcurcuminfromCurcumalongarhizomes.Rev.Bras.Farmacogn.23, 94–100.

Puglia,C.,Frasca,G.,Musumeci,T.,Rizza,L.,Puglisi,G.,Bonina,F.,Chiechio,S., 2012.CurcuminloadedNLCinduceshistonehypoacetylationintheCNSafter intraperitonealadministrationinmice.Eur.J.Pharm.Biopharm.81,288–293.

Rusig,O.,Martins,M.C.,1992.Efeitodatemperatura,dopHedaluzsobreextratos deoleorresinadecúrcuma(CurcumalongaL.)ecurcumina.Rev.Bras.Cor.Nat. 1,158–164.

Sartorelli,P.,Anderson,H.R.,Angerer,J.,Corish,J.,Drexler,H.,Goen,T.,2000. Percu-taneouspenetrationstudiesforriskassessment.Environ.Toxicol.Pharmacol.8, 133–152.

Serra,M.L.G.,Vásquez,M.L.R.,Villafuerte,L.R.,Garcia,B.F.,Hernandez,A.L.,2009.

Efecto de los componentes de la formulación en las propiedades de las nanopartículaslipídicassólidas.Rev.Mex.Cienc.Farm.40,26–40.

Suwantong,O.,Waleetorncheepsawat,S.,Sanchavanakit,N.,Pavasant,P., Cheep-sunthorn, P., Bunaprasert,T., Supaphol, P., 2007. Invitro biocompatibility of electrospun poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)fibermats.Int.J.Biol.Macromol.40,217–223.

Tønnesen,H.H.,Karlsen,J.,1985.Studiesoncurcuminandcurcuminoids:VI– kinet-icsofcurcumindegradationinaqueoussolution.Z.Lebensm.Unters.For.180, 402–404.

Yallapu,M.M.,Jaggi,M.,Chauhan,S.C.,2012.Curcuminnanoformulations:afuture nanomedicineforcancer.DrugDiscov.Today17,71–80.

Yallapu,M.M.,Jaggi,M.,Chauhan,S.C.,2013.Curcuminnanomedicine:aroadto cancertherapeutics.Curr.Pharm.Design19,1994–2010.

Wissing,S.A.,Lippacher,A.,Muller,R.H.,2001.Investigationsontheocclusive prop-ertiesofsolidlipidnanoparticles(SLN).J.Cosmet.Sci.52,313–324.

Zamarioli,C.M.,2014.Formulac¸ãotópicaparaprevenc¸ãoetratamentode radio-dermites:desenvolvimentodenanopartículaslipídicassólidas(NLS)contendo curcuminoideseestudoinvitro.Dissertac¸ãodeMestrado,EscoladeEnfermagem deRibeirãoPretodaUniversidadedeSãoPaulo,RibeirãoPreto,pp.139.

ZetasizerNano-ZS,2009.UserInstructions.NBTCUserInstructions.

Imagem

Fig. 1. Chromatograms obtained for: (A) Curcumin analytical standard (Sigma–Aldrich); (B) drug containing the three curcuminoids used as raw material; (C) sample extracted from pig skin after penetration/permeation test.
Fig. 5 shows the morphology of the SLN by atomic force microscopy, AFM. Fig. 5A presents the topographic view, while the frontal view is shown in Fig
Fig. 6. Curcuminoid release in phosphate buffer (pH 7.4) solution after 16-h test.
Fig. 8. Chromatograms obtained from samples of extratum corneum after the penetration/permeation tests

Referências

Documentos relacionados

The ordination of the samples by the similarities of their chromatographic traits showed the existence of three chemo- types: (i) the populations Búzios and Abrolhos which

rigida , is a cytotoxic quinone with low selectivity that induces cells death trough a mechanism that is associated, though incompletely, with the excessive generation of

This study aimed to investigate the influence of leaf age on methylxanthine and total phe- nolic contents by High Performance Liquid Chromatography and Ultraviolet Spectroscopy, as

Structure identification of isolated compounds involved analysis of spectral data of 1D and 2D-NMR.. The isolated compounds are here reported for the first time

In addition, the antimicrobial activity against several strains of microorganisms was evaluated for the first time for this compound, being observed significant antibacterial

caribaeum , respectively, and group E consisted of non-infected animals treated with 10 mg/kg of extract to determine the potential toxic effects of extracts.. After treatment, the

In the present study, the reduced activity of antioxidant enzymes in acetaminophen-treated rats is an obvious reflection of excessive formation of free radicals resulting in

Histopathological analysis and CBCT images evidenced tissue alterations and bone resorption in all groups with periodontal dis- ease, although animals in GS5%, GS10% and D10%