• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
3
0
0

Texto

(1)

Pulsed laser rystallization of SiGe alloys on GaAs

F. Dondeo, 1

P. V. Santos, 2

M.Ramsteiner, 2

D. Comedi, 1

M. A.A. Pudenzi, 1

, and I. Chambouleyron 1

1

InstitutodeFsiaGlebWataghin,UniversidadeEstadual deCampinas, 13081-970Campinas,SP,Brazil

2

Paul-Drude-Institut f urFestkorperelektronik, Hausvogteiplatz5{7, 10117Berlin,Germany

Reeivedon23April,2001

We have investigated the rystallization of amorphous SiGe lms deposited onrystalline GaAs

(001) substrates using ns laser pulses. Analysisof the lm struture usingRaman spetrosopy

indiatestheformationofheteroepitaxialSixGe1 x/GaAsstruturesforSiompositionsuptox =

25%. Higherompositionslead topolyrystallinelms. Thisisattributedtotheinreasedlattie

mismathbetweenSixGe1

x

andGaAsastheSifrationinthealloyinreases.

I Introdution

Pulsedlaserrystallization(LC)[1℄isastandard

teh-nique for the fabriation of large area polyrystalline

lms from theamorphous (a-) phase. This tehnique

analso beused to produe high quality epitaxial Ge

layerswithabruptinterfaesonGaAs (001)substrates

[2℄. Sine Ge and GaAs are well lattie-mathed, an

interesting question is how the epitaxial LC proeeds

when Si is introdued in aontrolled wayinto the Ge

matrix, so as to form Si

1 x Ge

x

alloys with a lattie

onstant dierent from that of the substrate. In this

ontribution,weaddressthisquestionbyinvestigating

theLC of a-Si

x Ge

1 x

alloysdeposited onGaAs (001)

substrates. Raman sattering studies of the LC lms

giveevidenefortheepitaxialrystallizationof

100-nm-thik Si

x Ge

1 x

alloys withompositions x upto 25%.

Higherompositionsleadtopolyrystallinelms. This

behaviorisattributedtotheinreasedlattiemismath

with the substrate, when the silion onentration in

the alloy inreases. Sine the epitaxial rystallization

requiresthemeltingoftheamorphouslmbythelaser

pulse, aseond important issueregarding the

rystal-lizationofSi

x Ge

1 x

alloysonGaAsistheintermixing

at the interfae with the substrate. The intermixing

was investigated using seondaryion mass

spetrome-try(SIMS).

II Experimental

The a-Si

x Ge

1 x

samples were grown by

ion-beam-assisted sputteringon GaAs (001) substrates. Before

lm deposition, the substrates were heated to 350 Æ

C

andbombardedbya30eVhydrogenionbeamfor1min

removal wasmonitored in-situ using x-ray

photoele-tron spetrosopy. 100-nm-thik a-Si and a-Ge lms

were thendeposited from Si and Ge targets(99.999%

pure) using 1000 eVKr +

ionsfrom aKaufmanngun.

a-Si

0:1 Ge

0:9

lmsofthesamethiknessweregrown

us-ing a Ge target overed with a piee of Si. In order

to obtainlaserrystallizedSi

x Ge

1 x

alloyswithother

ompositions x (x = 0.25, 0.50, and 0.75), a-Si/a-Ge

multilayerswithindividualSi andGelayerthiknesses

below 25 nmwere deposited. Eah multilayersample

onsists of 6 layers adding up to a total thikness of

100nm. Aswillbedemonstratedbelow,thelayers

om-pletelyintermixduringthelaserrystallizationproess,

leadingto the formationof ahomogeneousrystalline

(-)SiGealloywiththeompositiondeterminedbythe

relativethiknessesoftheoriginala-Geanda-Silayers.

The samples were rystallized with single pulses

(pulsewidthofapprox. 7ns)fromafrequeny-doubled

Nd:Yaglaser(=532nm). AGaussian-likelaserbeam

prolewithadiameter ofapprox. 4mmwasobtained

byusingavauumspatiallter. Thelaserpulse

uen-ieswereestimatedfromthemeasuredpulseenergyby

assumingaGaussianproleforthedistributionoflight

intensity on the irradiated area. The rystallization

proess was monitored in-situ by reording the

tran-sientreetivityofawdiodelaserbeam(=675nm)

during theLCproess. Theinreaseinthereetivity

indiates thatthea-SiGe alloysmeltduring laser

irra-diation[3℄.

Raman spetrosopy was employed to study the

strutural properties of the samples. The

measure-ments were performed at room temperature in the

baksattering geometry using the z(x; y)z, z(y; y)z,

z(x 0

; y 0

)z, and z(y 0

; y 0

)z sattering ongurations,

wherex;y;z;z;x 0

andy 0

denote,respetively,the[100℄,

(2)

retions of the (001) GaAs substrates. Note that

de-formation potential Ramansattering by longitudinal

optial(LO)phononsisallowedbyseletionrulesonly

for theongurationsz(x; y)z andz(y 0

; y 0

)z [4℄. The

redlines(

L

=676:4or647.1nm)ofaKr +

-laserwere

used forexitation.

250

300

350

400

450

500

λ

L

= 676.4 nm

Si

0.25

Ge

0.75

LO-GaAs

Ge-Ge

Ge-Si

Si-Si

z(y',y')z

z(x',y')z

In

te

n

s

ity

(a

rb

. u

n

its

)

Raman Shift (cm

-1

)

Figure 1. Raman spetra of a LC -Si

0:25 Ge

0:75 alloy

reorded inthe z(y 0

; y 0

)z (thik line, upperurve)and in

the z(x 0

; y 0

)z (thin line,lowerurve)sattering

ongura-tions. Thelaseruenywasapprox. 500mJ/m 2

.

III Results and Disussion

The Raman spetra of as-grown a-SiGe multilayers

showbroadRamanlinesentered around270and470

m 1

,whihareattributed totheGe-Geand Si-Si

vi-brationsofthea-Geanda-Silayers,respetively. After

LC, these lines narrowand shift somewhat in energy.

ARamanspetrumofaLC-Si

0:25 Ge

0:75

alloywithan

averageompositionx=25%reordedinthez(y 0

; y 0

)z

ongurationis shown by thesolidline in Fig.1. The

three mainpeaksfoundat290,400and470m 1

or-respond,respetively,toGe-Ge,Ge-SiandSi-Si

vibra-tionsofa-Si

0:25 Ge

0:75

alloy[5℄. TheGe-Siline,whih

onlyappearsafterLC,evidenestheintermixingofthe

SiandGelayersduringlaserirradiation. Thesharpline

at292m 1

(losetotheGe-Gevibration)orresponds

to satteringbyLOphononsin theGaAssubstrate.

Thespetrumreorded in the forbiddenz(x 0

; y 0

)z

ongurationin Fig. 1(thin line)showsastrongly

re-duedsatteringintensity. Thisredutionisattributed

to theepitaxialorientationoftheSi

0:25 Ge

0:75

lm

rel-ativeto the GaAs substrate. Similarresultswere also

obtainedforalloyswithx =10%. Onlypolyrystalline

regionswereobservedforx>25%,thusindiatingthat

thelargemismath preventstheformationof epitaxial

lms.

TheRamanspetrumandthusthestrutureofthe

LClayersdependssensitivelyonthelaserpulseueny.

Thisresultisillustratedin Fig. 2,whihdisplaysa

se-250

275

300

360

380

400

λ

L

=647.1 nm

r(mm)=

Si-Ge

epitaxial

polycrystalline

Ge-Ge / LO-GaAs

amorphous

Si

0.1

Ge

0.9

3

1.5

1.2

1.0

0

Scattering Intensity (arb. units)

Raman Shift (cm

-1

)

z(x,y)z

z(y,y)z

Figure2. RamanspetraofaLC-Si

0:1 Ge

0:9

alloyreorded

atdierentradialdistanesrfromtheenteroftheLCspot.

Theueniesforx=0,1,1.2,1.5,and3mmareestimated

tobe2000,1250, 1000,650,and0mJ/m 2

.

distanesr fromtheenterofthespotproduedbyLC

onamultilayerwithx=0.10. Thelaserpulse ueny

dereases with r following theGaussian-likeprole of

the laser beam. Forlarge distanes (r = 3 mm), the

pulse energy is insuÆient to indue the phase

tran-sition, so that the material remains amorphous. For

r = 1.5 mm, omparable intensities are measuredin

the z(x; y)z and z(y; y)z geometries, thus indiating

theformationofapolyrystalline-Si

0:1 Ge

0:9

alloy. For

r <1.2mm,theratiobetweenthesatteringintensities

intheallowedandforbiddensatteringgeometries

be-omesverylarge. Weattribute this large ratioto the

formationof anepitaxiallmwith thesame

rystallo-graphiorientationasthesubstrate.

The laser ueny of 1000 mJ/m 2

estimated for

r=1.2 isapproximatelythesameasthat required to

obtainhighqualityLC-GelmsonGaAs. Althoughthe

materialstillrystallizesepitaxiallyforr <1.2mm,the

peakintensityoftheRamanlinesatapprox. 290m 1

reordedin theallowedsattering onguration(thik

(3)

0

5

10

15

10

1

10

2

10

3

10

4

10

5

10

6

10

7

10

1

10

2

10

3

10

4

10

5

10

6

10

7

(b)

Ge

Si

Ga

counts/s

sputtering time (min)

(a)

counts/s

Figure3. ConentrationsofGe,Si,andGaasafuntionof

SIMSsputteringtimeforana-Si/a-Gemultilayer(a)before

and(b)afterLC. Theompositionofthe-Si

x Ge

1 x alloy

isx=0:25. Theoriginalpositionof theinterfaewiththe

substrateisindiatedbythevertialdashedline.

the high temperatures indued in the Si

1 x Ge

x layer

under high laser uenies, whih leads to strong

ma-terialintermixingattheGaAs/Si

1 x Ge

x

interfaeand,

eventually,toapartialmeltingoftheunderlyingGaAs.

WhentheSi

1 x Ge

x

alloyrystallizes,itsabsorption

o-eÆient dereases, and it beomes almost transparent

totheinident(andsattered)light. Asaresult,a

sub-stantial fration of the Raman signal deteted in LC

lmsoriginatesfromthemateriallosetotheinterfae

with the substrate. The broadened Raman line

en-tered at280m 1

is attributed tothesattering from

oupled LO-phonon-plasmonmodes in theintermixed

p-typeGaAs:Gelayer[6, 7℄.

Thestrongintermixingfor high pulseuenies

be-omesevidentin theSIMSprolesdisplayedinFig.3,

whihwerereordedonana-Si/a-Gemultilayerbefore

[Fig.3(a)℄andafter LC [Fig.3(b)℄. TheSIMS

experi-beam. The dashed vertial lines indiate the original

positionoftheSi

0:25 Ge

0:75

/GaAsinterfae,loated

ap-prox. 100nmbelowthesurfae. Themodulationofthe

Ge andSi onentrationsin theas-grownmultilayeris

evidentinFig.3(a). Thismodulationdisappearsasthe

individualSiandGelayersompletelyintermixduring

LC, giving rise to a homogeneous -Si

0:25 Ge

0:75 lm

[Fig. 3(b)℄. The proles also show a strong

interdif-fusion of Ga into the -Si

0:25 Ge

0:75

lm and a muh

less pronouned diusion of Ge and Si into the

sub-strate. Arsenidiusion(notshown)wasalsoobserved

in SIMSproles measured with aesium primary ion

beam.

IV Conlusions

Inonlusion,wehavestudiedthestrutureofLCSiGe

alloysgrownon(001)GaAssubstrates. Epitaxiallms

with a thikness of 100 nm were obtained for Si

on-entrations up to 25%. Higher Si onentrations lead

to polyrystallinelms.

Aknowledgments

The investigation are partially supported by a

DAAD(Germany)- CAPES(Brazil)international

o-operationprogram.

Referenes

[1℄ J.M.PoateandJ.W.Mayer,LaserAnnealingof

Semi-ondutors (AademiPress,New York,1982).

[2℄ J.E.Greene,K.C.Cadien,D.Lubben,G.A.Hawkins,

G.Erikson,andJ.R.Clarke,Appl.Phys.Lett.39,232

(1981).

[3℄ G. Aihmayr, D. Toet, M. Mulato, P. V. Santos, A.

Spangenberg, S. Christiansen, M. Albreht, and H. P.

Strunk,J.Appl.Phys.85,1040(1999).

[4℄ M.Cardona,LightSattering inSolidsII,(Ed.M.

Car-dona and G.Guntherodt, Springer, Berlin, 1982), pp.

153.

[5℄ M. A.Renui,J.B.Renui,and M.Cardona, Light

Sattering in Solids, (Ed. M. Balkanski, Flammarion,

Paris,1971),pp.326-329.

[6℄ A.Mlayah, R.Carles, andA.Leyuras, J.Appl.Phys.

71,422(1992).

[7℄ D.OlegoandM.Cardona,SolidStateCommun.32,375

Imagem

Figure 1. Raman spetra of a LC -Si
Figure 3. Conentrations of Ge, Si, and Ga as a funtion of

Referências

Documentos relacionados

The harateristis of multi-layered InAs/GaAs self assembled quantum dots (SAQDs) annealed af-.. ter the growth were here studied using a ombination of apaitane-voltage

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the