• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2A

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2A"

Copied!
4
0
0

Texto

(1)

Interfaial Layers and Impurity Segregation

in InP=In

0:53 Ga

0:47

As Superlatties

L.K. Hanamoto a

, A.B. Henriques a

, C. V.-B. Tribuzy b

, P. L. Souza b

,

B. Yavih b

, and E. Abramof

a

Instituto deFsia,Universidadede S~aoPaulo,CaixaPostal 66318,05315-970, S~aoPaulo,Brazil;

b

CentrodeEstudos emTeleomunia~oes,PontifiaUniversidade Catolia,

RuaMarqu^esdeS~aoViente, 225,22453-900, Rio deJaneiro,Brazil;

LAS-INPE, Av. dosAstronautas,1758-Jd.Granja, 12227-010,S~aoJosedosCampos,S.P.,Brazil.

Reeivedon23April,2001

The interfaes in InP=In

0:53 Ga

0:47

As superlatties modulation doped with Si were investigated

usingmagneto-transport,apaitane-voltage,andhighresolutionX-raydirationmeasurements.

Results indiatethatathikinterfaial layerisformedwhenInPis grownontopofInxGa1 xAs,

andthatSiatomsthatfallintheinterfaiallayerhaveahighprobabilityofnotformingashallow

donorenter. Usingasimpletheoretialmodelthewidthoftheinterfaiallayerwhihwasestimated

tobe71monolayers.

I Introdution

The ability to produe abrupt interfaes between

epitaxial layers is important in manufaturing

mod-ernoptoeletronidevies,beausegradedinterfaesan

disrupt the optial spetra [1℄ and redue arrier

mo-bility [2℄, hindering devie appliations [3℄. For this

reason,many eortshavebeenspent to attainabrupt

interfaesinheterostrutures.

To improve interfaes, a ommonly used

proe-dure onsists in an interruption of the growth

pro-essbetweenthegrowthoftwodierentlayers[4℄-[10℄.

ForInP/In

0:53 Ga

0:47

Assystemsgrownbymetalorgani

vapour phase epitaxy, during growth interruptionthe

growth hamber is kept under a ow of the group V

element(P,As)of thelayerto begrownsubsequently.

For interruption times of 1s, the interfae between

In

0:53 Ga

0:47

As grown on InP (the so-alled upper

in-terfae) is abrupt [5, 6℄. However, an adequate

pro-edure to obtain an abrupt interfae for InP grown

on In

0:53 Ga

0:47

As (the so-alled lower interfae) has

not been reported yet. The lowerinterfae is always

graded, and ontains an interfaial layer of hemial

omposition InAs

x P

1 x

. Theinterfaiallayeroupies

the spae whih in an ideal struture would be

ou-pied by pure InP and the thikness and the hemial

ompositionoftheinterfaiallayerareverysensitiveto

the growth onditions [5℄-[10℄. To establish the ideal

growthonditions,reliableexperimentalproeduresto

haraterizetheinterfaesareneeded. However,thisis

a diÆulttask, due to the limitations inherent to the

resolution X-ray diration (HRXRD) and SIMS [7℄.

FromHRXRDmeasurementsonshortperiod

superlat-ties,whentheX-rayspetrashowfewsatellitepeaks,

thethiknessandthestrainoftheinterfaiallayer

an-not be established independently, onlythe produt of

thesequantitiesanbedetermined[8℄. SIMS

measure-mentsarelimitedin resolutionduetoraterurvature

and the knok-on eet [11℄, and annot be used to

deduethethiknessofanindividuallayerwithan

a-uraygreaterthan15

A[10℄.

Inthis workwepresentastudyoftheinterfaesin

InP=In

0:53 Ga

0:47

As superlatties using a ombination

of HRXRD, apaitane-voltage (C-V) and

magneto-transport measurements. The analysis of the entirety

oftheresultsobtainedallowsustoestimatethe

thik-ness of the interfaial layer at the lower interfae to

be 6-8 monolayers(ML) (1 monolayer 3

A) in our

samples.

II Experimental proedure

InP=In

0:53 Ga

0:47

Assuperlattiesmodulationdoped

with Si in the middle of InP barriers were grown by

low pressure metalorgani vapor phase epitaxy

(LP-MOVPE).Growthwasinterruptedattheinterfaesfor

1s, during this timeintervalthegrowthhamberwas

keptundertheowofgroupVelementofthelayertobe

deposited subsequently, in aordaneto the

presrip-tion whih yielded thebest interfaes reported sofar.

(2)

nessoftheIn

0:53 Ga

0:47

As layers(50

A),butdieredin

thethiknessoftheInPlayersandin thedopinglevel.

Furtherdetailsontheexperimentaltehniquesusedan

befoundinRef.[13℄.

III Results and disussion

Inordertodeterminetheharateristiwidthofthe

layersdopedwithSiinoursamples,theC-Vspetrum

oftheontrolsample311wasmeasured,whihonsists

ofathikInPlayerontainingasinglerystallineplane

dopedwithSi (delta-dopedlayer). TheC-Vspetrum

wasreproduedtheoretiallyfollowingthepresription

desribedinRef. [14℄. Fig. (1)showstheexperimental

and theoretialC-Vspetra,whih determinethat the

Siatomsaredistributedinalayerwhoseharateristi

width is w =18

A (6 ML). Thenon-zero thiknessof

the Si layer is a onsequene of impurity segregation

during thegrowthproess,whereasdiusionis

negligi-ble[15℄. Thethiknessw=6MLshowsthatinour

sam-plesSi segregationismuhlesseetivethanfoundby

Skuras etal [15℄in samplesgrownbyMBE,whereby

the harateristiwidth of the doped layerwas found

to be45ML.

Figure1. C-Vspetrumofsample311. Thesquaresarethe

experimentaldataandthesolidlineisthetheoretialurve.

Thesuperlattieperiodofthesampleswasobtained

from their HRXRD spetra; the thikness of the InP

layerswas obtainedbysubtrating thenominal

thik-nessoftheIn

0:53 Ga

0:47

Asfromthesuperlattieperiod.

The density of free arriers was dedued from a two

arrierttothemagnetoresistanedata. Table1

sum-marizes the results. The valueof N

d

givenin Table1

orrespondstothenominalvalueofthearealdensityof

ativeSiatomsin eahInPbarrier,whihwasderived

fromtheShubnikov-deHaasspetraofdelta-doped

lay-ers grown under the same onditions. Table 1 shows

thatthedensityoffreearriersdereaseswiththe

thik-nessoftheInPlayers. Fornarrowbarriers,the

proba-bilitythatagivenSiatomfallsintoaninterfaiallayer

is greaterthanforthikerones. Thustheobserved

de-number of Si atoms that areloatedin the interfaial

layers. ThissuggeststhattheSiatomsattheinterfaes

arenoteletrially ative. Thepossibility thattheseSi

atoms form shallowomplexes is also exluded, given

thatthemeasureddensityoffreearriersdoesnot

dis-play ativated behavior in the 2-300 K temperature

range. A possible explanation is that some of the Si

atoms loatedwithin the interfaial layers form

nega-tivelyharged DX enters [16,17℄. Thedisorderand

mehanialstrain, whih are present at the interfaes

[9℄favortheformationofDXenters[17℄.

Table I. Sample parameters obtained from

Shubnikov-de Haas spetra. ns is the sheet arrier

den-sity and Nd is the nominal doping density.

Sample InPlayer ns Nd ns=Nd

width(

A) (10 12

m 2

) (10 12

m 2

)

311 - 3.95 3.95 1:0000:006

327 48.5 4.205 5.34 0:790:06

326 47.5 3.242 3.95 0:820:06

331 40.7 3.389 5.34 0:630:05

332 38.2 2.593 3.95 0:660:05

333 28.9 1.611 3.95 0:410:04

334 28.1 1.815 5.34 0:340:04

336 20 1.106 3.95 0:280:04

335 17.8 1.668 5.34 0:310:04

Figure2. A Siplanar doped InP=In0:53Ga0:47As

superlat-tie with an interfae layer of InAsxP1

x

(with width h),

betweenInPgrownonIn0:53Ga0:47As.

Tomodeltheoretiallytheredutionoffreearriers

when the thikness of InP barriers dereases, we will

assume that the upper interfae is ideal, whereas the

lowerone isgraded, with aninterfaial layerof

thik-ness h. The Si atoms are supposed to be distributed

statistially along the growth axis in aordane with

aGaussianoffull widthofhalf maximumequaltothe

harateristiwidthofthedopinglayer,i.e. w=6ML.

Due to the segregationeet, theenter of the

Gaus-sianisallowedtobedisplaedfromtheenteroftheInP

barriers,by thesegregationlength, ". Fig. (2) shows

shematially theepitaxial layers,the interfaial layer

andthestatistialdistributionofSiatoms. Weassume

that agiven Si atom hasaprobability pof forming a

(3)

in-theamountoffreearriers,asafuntion ofthebarrier

width,L

B

,isgivenby:

n

s

N

d =

1 p

erf

p

4ln2

w

LB

2

+(h LB)(LB h) "

erf p

4ln2

w

LB

2 "

(1)

where N

d

isthe arealdensityof Si atoms introdued

into eah of the InPbarriers, (x)=1 if x >0; and

(x)=0ifx<0,anderf(x)istheerrorfuntion:

erf(x)= 2

p

Z

x

0 e

u 2

du (2)

Fig. (3)showstheexperimental dataand thebest

theoretialtusingEq. (1),wherebythetting

param-etersareh,p,and". Forthedottedurve,segregation

was notallowedfor and " was xed at zero; this

pro-dues a lower bound estimate of the thikness of the

interfaial layer, whih is found to be h =6 ML, for

p=0:51. Forthe ontinuousurve," wasfreeto

ad-just itself,resultingin "=1ML, aninterfaiallayerof

71ML,andp=0:480:05. Thesmallvalueof"

ob-tained is supportiveof our earlier onlusionthat the

segregation eet is pratially absent in the samples

usedinthis work.

Figure 3. Experimental data and modelurves given by

Equation1,with"=0(dotedurve)and"=1ML(solid

urve).

UsingtheanalysisofHRXRDmeasurements,Jiang

et. al. [9℄ estimated that for a In

0:53 Ga

0:47

As/ InP

(112

A/36

A)superlattie,thelowerinterfaelayerisof

InAs

0:28 P

0:72

omposition,with athiknessof12 ML.

Thesamplestudied wasgrownunderverysimilar

on-ditionstotheonesusedbyus. Jiang[9℄suggestedthat

thethiknessoftheinterfaiallayerinreaseswiththe

amount of residual As in the growth hamber. The

amountofAsinthegrowthhamberinreaseswiththe

thiknessoftheIn

0:53 Ga

0:47

Aslayerjustgrown. From

the data reported by Jiang and o-workers[9℄, it an

the order of 5.3 ML forevery50

A of In

0:53 Ga

0:47 As.

This result is quite similar to the one obtainedby us

foroursamples,allofwhihhadthesamethiknessof

50

Ain theIn

0:53 Ga

0:47

Aslayers,andwhoseinterfaial

layerweestimatedto beofthikness7ML.

Furthersupporttotheonlusionthatoursamples

ontainathiklowerinterfaeanbeseeninFig. (4),

whihdepitsatypialHRXRDspetrumforour

sam-ples. TheHRXRDspetrumexhibitssatellitepeaksof

order+2,+3,and+4muhlessintensethanthepeaks

of order -2,-3, and -4,respetively, whih is aditional

evideneofthepreseneofaninterfaiallayer[9℄.

IV Conlusions

It was found that the density of free arriers in

modulation-dopedInP/In

0:53 Ga

0:47

Assuperlatties

de-reases veryrapidly when thewidth of the InPlayers

in the struture dereases. The redutionin the free

arrier density orrelates with the number of doping

atoms whih fall in the interfaial layer formed when

InP isgrown ontop ofIn

x Ga

1 x

As. Usingthe

trans-portdata andassumingthe spatialdistribution of the

Si atoms to be as dedued from C-V measurements,

thethiknessofthe interfaiallayerwasestimated. A

simpletheoretial model wasdeveloped,in whih itis

assumed that thedoping atoms anbe inativewhen

theyareloatedwithin aninterfaiallayer. Usingthis

model thewidth of theinterfaiallayerwasestimated

to be 7 ML. To determine the exat fate of the Si

atoms that fall in the interfaial layerfurther

investi-gationsarerequired. Themodelalsoindiatesthatthe

segregationlength of Si is verysmall (1 ML)in our

samples.

Figure4. X-rayspetrumofsample326.

Aknowledgments

Wethank Prof. M. J.Caldasforuseful disussionsonthe

(4)

Referenes

[1℄ K. Maolong, S. Helmy, A. C. Brye, J. H. Marsh, J.

Davidson,P.Dawson,J.Appl.Phys.84,2855(1998).

[2℄ T.Ando,A. B.Fowler, F.Stern,Rev.Mod.Phys.54,

502(1982).

[3℄ S. D. Gunapala and S. D. Bandara in Quantum well

infrared photodetetor foal plane arrays, Intersubband

Transition inQuantum Wells: Physis andDevie

Ap-pliations,SemiondutorsandSemimetals,vol62,

Aa-demiPress(2000).

[4℄ B. Lakshmi, B. J. Robinson, D. T. Cassidy, D. A.

Thompson,J.Appl.Phys.81,3616 (1997);

K.Radhakrishnan, T. H. K.Patrik, P. H. Zhang, H.

Q.Zheng,S.F.Yoon,A.Raman,Miroeletroni

Engi-neering51-52,433(2000);

M.Tabuhi, R.Takahashi,M. Araki,K.Hirayama,N.

Futakuhi,Y.Shimogaki,Y.Nakano,Y.Takeda,Appl.

Surf.Si.159-160,250(2000).

[5℄ W.Seifert,D.Hessman,X.Liu,L.Samuelson,J.Appl.

Phys.75,1501(1993).

[6℄ J.Geurts,J.Finders,J.Woitok,D.Gnoth,A.Kohl,K.

Heime,J.CrystalGrowth145,813(1994).

[7℄ A.P. Roth, P.Levesque,R.W. G.Syme, D.J.

Lok-wood,G.C.Aers,T.S.Rao,C.Laelle,J.Appl.Phys.

[8℄ T.Marshner,J.Brubah,C.A.Vershuren,M.R.Leys,

J.H.Wolter,J.Appl.Phys83,3630(1998).

[9℄ X. S. Jiang, A. R. Clawson, P. K. L. Yu, J. Crystal

Growth124,547(1992).

[10℄ A.R.Clawson,T.T.Vu,S.A.Pappert,C.M.Hanson,

J.CrystalGrowth124,536(1992).

[11℄ E.F.Shubert,DeltaDopingofSemiondutors,

Cam-bridgeUniversityPress(1996).

[12℄ A.B.Henriques,L.K.Hanamoto,R.F.Oliveira,P.L.

Souza,L. C.D.Gonalves, B.Yavih,PhysiaB

273-274,835(1999).

[13℄ A. B. Henriques, L. K. Hanamoto, P. L. Souza, B.

Yavih,Phys.Rev.B61,13369(2000).

[14℄ B.Yavih,P.L.Souza,M.Pamplona-Pires,A.B.

Hen-riques,L.C.D.Gonalves, Semiond.Si.Tehnol.12,

481(1997).

[15℄ E.Skuras,A.R.Long,B.Vogele,M.C.Holland,C.R.

Stanley,E.A.Johnson,M.VanderBurgt,H.Yaguhi,

J.Singleton,Phys.Rev.B 59,10712(1999).

[16℄ D. J. Chadi, K. J. Chang, Phys.Rev. Lett. 61, 873

(1988).

[17℄ J.A.Wolk,W.Walukieviz,M.L. W.Thewalt,E.E.

Imagem

Figure 1. C-V spetrum of sample 311. The squares are the
Figure 4. X-ray spetrum of sample 326.

Referências

Documentos relacionados

The harateristis of multi-layered InAs/GaAs self assembled quantum dots (SAQDs) annealed af-.. ter the growth were here studied using a ombination of apaitane-voltage

vestigated in order to shift the optial emission of the strutures toward longer

ment ongurations: paraboli leads (dotted line), 1D-leads. (dashed line) and the hybrid ase

quantum waveguides of dierent shapes when a defet is loated either in the wire region or in the..

proesses leading to the phonon emission. We found that the peak value of the. inelasti transmission probability at the

taking into aount the eetive mass dependene of the Mn onentration and the strain eetsx. In this work we analyze the giant Zeeman splitting due to applied magneti elds and

dene of both 2DEG density and ground state energy. has to

The results show that the exiton trapping in periodi magneti elds is.. possible and dependent on the