• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
7
0
0

Texto

(1)

Ergodi Magneti Limiter for the TCABR

Elton C. daSilva, Iber^eL. Caldas,

Instituto deFsia,UniversidadedeS~aoPaulo

C.P.66318, 05315-970,S~aoPaulo,SP,Brazil.

and Riardo L. Viana

Departamento deFsia,Universidade FederaldoParana

C.P.19081, 81531-990,Curitiba,PR,Brazil.

Reeivedon3July,2001

Inthisworkitisonsideredtheeetofanergodimagnetilimiterontheplasmaonnedinthe

TCABRtokamak.Thepoloidaldistributionofthelimiterurrentsisdeterminedtakingintoaount

the toroidalgeometry of this tokamak. Theplasma equilibrium eld is analytially obtained by

solvingtheGrad-Shluter-Shafranovequationinpolartoroidaloordinates. Theperturbinglimiter

eldisobtainedasavauumeldbysolvingtheLaplaeequation.Supposingthelimiterationasa

sequeneofdelta-funtionpulses,asympletimapisderivedbyusingaHamiltonianformulation

for the perturbedeld line. Examples are givento illustrate the inuene of this design onthe

topologyoftheperturbedeldlinestruture.

I Introdution

Theplasmaonnementin tokamaks anbeimproved

by reatinga haoti eld line region whih dereases

theplasma-wallinteration[1,2℄. Thishaotiregionis

reated bysuitably designed resonantmagneti

wind-ings whih produe the overlapping of two or more

hainsofmagnetiislandsand,onsequently,the

mag-netisurfaesdestrution.

However,thosewindingshavetobeinstalledonthe

outsideofthevauumvessel,whihisoupiedby

sev-eraldiagnostis. ThisdiÆultyanbeoveromeby

us-ingasetofErgodiMagnetiLimiters(EML)that are

narrowsliesofhelialwindingsintheform ofurrent

rings,whiharemountedalongthetoroidaldiretion.

The rst oneptual and physial test of an EML

sheme was arried out on the Texas Experimental

Tokamak (TEXT)[3,4℄. Sine then EMLs havebeen

used inotherstokamaks [5,6℄asawayofpartileand

heat ontrolattheplasmaedge[7℄.

Furthermore,ithasreentlybeenreported[8,9℄that

runawayeletronavalanhesanbesuppressed by the

presene of radialdiusion. As the eletronswith

en-ergies higher thanthe thermal energyare more

sensi-tivetomagnetiutuationsitouldbehelpfulto use

EMLs inorder toimprovetheradialdiusionofthose

eletronsbyproduingaregionofhaotieldlines.

A suitable design of an EML ring depends on the

detailed knowledge of the toroidal geometry inuene

ontheequilibriumeld lineonguration.

In this work, we present a sympleti map that

desribes the ation of a set of EMLs for the

toka-makTCABR.

This map allows us to generate Poinare

ross-setions faster in omparison with those obtained

throughnumerialintegrationofeldlineequations.

Inaddition,the mapweobtainanberegardedas

aanonial transformation between angle-ation

vari-ables derived from a Hamiltonian formulation. It is

worth noting that this sympleti map embodies two

importantfeatures: (i)itomesstraightlyfromthe

ex-pressionsfor the magneti elds, and (ii) it preserves

themaintoroidalharateristisduetotheonnement

vesselgeometry.

This map has reently been used to investigate

anomalouseld line diusion and lossdue to ollision

withthetokamakwall[10℄;aswellastheonsetofhaos

andbifurationsofmagnetiaxes[11℄.

Ourpaperisorganizedasfollows. InsetionII,we

outlinetheequilibriumand perturbingmagneti elds

thatareusedinthiswork. InsetionIII,the

symple-timapforthesetofEMLsispresented. InsetionIV,

theinueneoftheEMLsonthemagnetisurfaesfor

theTCABRtokamakparametersisdisussed. Finally,

insetionV,ouronlusionsaresummarized.

II Magneti eld ongurations

The equilibrium magneti eld B

0

is alulated from

(2)

equi-libriumgivenbythefollowingsetofequations:

JB

0

=rp; (1)

rB

0 =

0

J; (2)

rB

0

=0; (3)

wherepandJaretheequilibriumpressureandurrent

density, respetively.

For an axisymmetri onguration, the above set

ofequationsisreduedtotheGrad-Shluter-Shafranov

equation, whih desribesthebehaviorof thepoloidal

magnetiux .

Toobtain ,in termsofthe polar toroidal

oordi-natesystem[12℄(r

t ;

t ;'

t

),weassume[13℄thefollowing

peakedurrentprole,ommonlyobservedintokamak

disharges: J 3 (r t )= I p R 0 0 a 2

(+1) 1 r 2 t a 2 ; (4)

inthisexpression,I

p

andaaretheplasmaurrentand

radius,respetively. Theradialpositionofthemagneti

axisintheylindrialoordinatesystemisR 0

0

andis

aonstant.

As a funtion of , the ontravariant omponents

oftheequilibriummagnetieldB

0 are: B 1 0 = 1 R 0 0 r t t ; (5) B 2 0 = + 1 R 0 0 r t r t ; (6) B 3 0 = 0 I e 2R 2 ; (7) where I e

is the external urrent that generates the

toroidalmagneti eld omponentand R isthe radial

oordinatein theylindrialsystem.

At lowest order in rt

R 0

0

, we obtain (r

t ) and

the followingequilibrium magneti eld ontravariant

omponents:

B 1

0

= 0; (8)

B 2 0 = B 2 a a 2 r 2 t " 1 1 r 2 t a 2 +1 # ; (9) B 3 0 = B 3 T 1 1 2 rt R 0 0 os( t ) : (10)

Fig. 1 shows the ontravariant omponents of the

equilibrium magneti eld. Wenormalize the

ompo-nent B 2

0

to its valueat r

t

= a, B 2 a = 0Ip 2a 2

, (Fig. 1a)

andB 3

0

toits valueat themagneti axis,B 3 T = 0 I e 2R 0 0 2 , (Fig.1b).

Theorrespondingsafetyfatorqis:

q = 1 2 Z 2 0 B 3 0 (r t ; t ) B 2 0 (r t ; t ) d t = q (r t ) q 1 4 r 2 t R 0 0 2 ; (11) with q (r t )= I e I p r t R 0 0 2 1 1 1 r 2 t a 2 +1 : (12)

−1.0

−0.5

0.0

0.5

1.0

(R−R

0

)/b

0.0

1.0

2.0

3.0

4.0

Contravariant components of

B

0

(a)

(b)

Figure 1. Contravariant omponents of the equilibrium

magneti eld B

0

. In (a), we show B 2

0

normalized to B 2

a

andin(b)weshowB 3

0

normalizedtoB 3

T .

This safety fator shows a paraboli prole with

q 1:0 at the magneti axis and q 5:0 at plasma

edge(Fig. 2).

0.0

0.2

0.4

0.6

0.8

1.0

r

t

/a

0.0

1.0

2.0

3.0

4.0

5.0

q

Figure 2. Radial prole of the safety fator. The radial

oordinater

t

wasnormalizedtotheplasmaradiusa.

The perturbing magneti eld we onsider in this

paperisproduedbyapairofhelialwindingsinstalled

on theexternalvauum vessel surfae. These

ondu-tors drive urrentsI

h

in opposite diretions. To

pro-due an eÆient resonant eet they must have the

same pith as the eld lines in the rational magneti

surfae with q = m0 n (m 0 and n 0

(3)

to disturb. The toroidalgeometrymakesthe eldline

pithnonuniform. Inordertotthisnonuniformitywe

hoose the followingwinding law for the urrent

on-dutors:

u

t =m

0 [

t

+sin(

t )℄ n

0 '

t

=onstant: (13)

Theparameterisobtainedbyttingthiswinding

lawtotheequilibriumeldlinepathintherational

sur-fae withq= m

0

n

0

. For(m

0 ;n

0

)=(5;1)thisparameter

takesthevalue=0:59[13℄.

Therefore,weadoptthefollowingexpressionforthe

helialurrentdensity:

J

h =

I

h

R 0

0 r

t Æ(r

t b

t )[Æ(u

t ) Æ(u

t )℄e

ut

; (14)

that desribes two urrent ondutors loated at the

toroidal surfaer

t =b

t

, oneofthem driving aurrent

I

h

alongthehelixu

t

=0andtheotherdrivingaurrent

I

h

alongthehelixu

t =.

Basially,therearethreedierentapproahesto

al-ulate the perturbing magneti eld. The rst one is

the diret determination of the magneti eld using

the Biot-Savart law. The seond one is to alulate

straightly the vetor potential for the magneti eld.

Thethirdone,whihistheapproahwehoose,

orre-sponds to the appliation of boundaryonditions,

de-rived from the helial urrent density, on a magneti

salar potential

M

. The boundary onditions to be

appliedatthewallr

t =b

t

omefrom:

B ext

1 B

int

1

=

0 Z

ext

int dr

n J

h

; (15)

wheredr

n

isthedierentialvetorperpendiulartothe

surfaer

t =b

t

. Heretheperturbingmagnetield isa

vauum eld: B

1

=r

M

, where the magnetisalar

potential

M

satisestheLaplaeequationr 2

M =0.

Inpolartoroidaloordinatesystem,theLaplae

equa-tionreads[13℄:

1

r

t

r

t

r

t

M

r

t

+ 1

r 2

t

2

M

2

t r

t

R 0

0

os(

t )

2

2

M

r 2

t +

+ 3

r

t

M

r

t

sin(

t )

1

r 2

t

M

t +

2

r

t

2

M

t r

t

+

+ 1

R 2

2

M

' 2

t

=0: (16)

d

Figure3. ShematidiagramofanErgodiMagneti

Limiter.

Aswehavestatedintheintrodution,Ergodi

Mag-netiLimiters may beregardedasnarrowsliesof

he-lialwindings with lengthsl<<2R

0

(seeFig.3), so

it is enough to take the lowest order solution of the

Eq.(16)to modeltheEMLperturbingmagnetield.

This lowest order solutionof the Laplae equation

isobtainedbytakingtherealpartofthefollowing

ex-pression:

M =

0 I

h

i m

0

X

k = m

0 J

k (m

0 )

r

t

b

t

m

0 +k

e

i[(m

0 +k )

t n

0 '

t ℄

: (17)

Notethat,duetothetoroidalgeometryeet,other

modesbesidesthe(m

0 ;n

0

)=(5;1) areexited, whose

amplitudesdeayproportionallyto Besselfuntions of

orderk.

Therefore,fromtheabovemagnetisalarpotential

M

, and keeping in mind that only the lowest order

solutionisenoughto modeltheEML ation, the

on-travariantomponentsoftheperturbingmagnetield

B

1 are:

B 1

1 =

M

r

(4)

B 2

1 =

1

r 2

t

M

t

; (19)

B 3

1

= 0: (20)

0

π

/2

π

3

π

/2

2

π

θ

t

−10.0

−5.0

0.0

5.0

10.0

B

1

1

/B

T

x10

3

Figure4.ContravariantomponentB 1

1

poloidalprole

al-ulatedat rt

a

=1andnormalizedtoB

T

. EMLparameters:

(m

0 ;n

0

) =(5;1),I

h

=3:2 kA,=0:59 andN

r

=4rings

symmetriallydistributedalongthetoroidaldiretion.

Fig.4 showsthe poloidal prole of the perturbing

magneti eld ontravariantomponentB 1

1

alulated

atplasmaedgeandnormalizedtoB

T

. Fig.5showsthe

radial prole of hjB 1

1 (r

t ;

t ;'

t )ji

t

normalized also to

B

T

. Thesymbolh i

t

meansan averagetakenalong

thepoloidal diretion,

t

,keepingr

t and '

t

onstant.

Thisperturbingontravariantomponentishosen

beauseitismostrelevanttotopologialmodiations

ofmagnetisurfaesthantheontravariantomponent

B 2

1 .

ToalulatetheseprolesweusethefollowingEML

parameters: I

h

=3:2kA,(m

0 ;n

0

)=(5;1),N

r

=4and

=0:59.

From Fig.5, wean see that the perturbing

mag-netield strength deaysrapidly withthe radial

dis-tanefrom theplasma edge. Thus, theEML

perturb-ing eet is important only lose to the plasma edge,

aetinglesstheplasmaentral region.

0.0

0.2

0.4

0.6

0.8

1.0

r

t

/a

0.0

1.0

2.0

3.0

4.0

5.0

<B

1

1

/B

T

> x10

3

Figure5. RadialproleofhjB 1

1 ji

t

normalizedtoBT. EML

parametersarethesameasinFig.4.

Exluding marginal stability states, for whih the

plasmaresponsewouldhaveto betakeninto aount,

thetotalmagnetieldisthesuperpositionofthe

equi-librium andperturbingelds:

B=B

0 +B

1

: (21)

III The sympleti map for the

ergodi magneti limiter

The perturbing magnetield B

1

weobtainedanbe

desribed in terms of a vetor potential A as B

1 =

rA. This vetor potential is related to the salar

potential

M

through the following expression: A =

iR 0

0

M e

3

.

Thetrajetoryof amagnetield line isdesribed

bytheequation:

Bdl=0; (22)

wheredlisanunitarydisplaementalongtheeldline.

Intermsofthepolartoroidaloordinates,thiseld

line equation redues to a set of ordinary dierential

equations:

dr

t

d'

t =

1

rtBT h

1 2 rt

R 0

0 os(

t )

i

t

( +A

3 ); (23)

d

t

d'

t =+

1

r

t B

T h

1 2 r

t

R 0

0 os(

t )

i

r

t

( +A

3 ):(24)

After transformingfrom the polar toroidal

oordi-nate system (r

t ;

t ;'

t

) to a more suitable system of

anonialoordinates(J;#;t), theaboveset of

dier-entialequationsbeomesthewellknownpairof

Hamil-tonequations:

dJ

dt =

H

#

; (25)

d#

dt =

H

J

: (26)

Thesenewangle-ationvariablesarerelatedto the

polartoroidaloordinatesinthefollowingway[14℄:

J =

1

4 1

s

1 4 r

2

t

R 0

0 2

!

; (27)

# = 2artan

1

(r

t )

sin(

t )

1+os(

t )

; (28)

t = '

t

; (29)

where

(r

t )=

q

1 2 rt

R 0

0

q

1+2 rt

R 0

(5)

in suh awaythat wehave:

H(J;#;t) = H

0

(J)+H

1

(J;#;t)

= 1

B

T R

0

0 2

(J)+ 1

B

T R

0

0 2

A

3

(J;#;t);

(31)

astheHamiltonianfuntion.

Finally,iftheringlengthlissmallenough,wean

modeltheEMLationas asequene ofimpulsive

per-turbationsentered at eah ringposition. This model

allowsustoadopt theEML Hamiltoniangivenbelow:

H

L =H

0 (J)+

l

R 0

0 H

1

(J;#;t) 1

X

k = 1 Æ

t k 2

N

r

;

(32)

for N

r

rings symmetrially distributed along the

toroidaldiretion.

TotheEMLHamiltonian(32)weanassoiatethe

followingarea-preservingmapping:

J

n+1

= J

n +f(J

n+1 ;#

n ;t

n

); (33)

#

n+1

= #

n +

2

N

r q(J

n+1 )

+g(J

n+1 ;#

n ;t

n );(34)

t

n+1 = t

n +

2

N

r

; (35)

with

f = H

1

#

; g= H

1

J

; (36)

= 2

l

R 0

0 I

h

I

e

: (37)

Whenthe perturbingurrentis turned o ( =0)

this map beomes a typial radial twist map,

hara-teristiofintegrableHamiltoniansystems.

IV Poinare ross-setion for the

tabr tokamak

This setion is dediated to present some results for

the TCABR tokamak. Below, it is shown its typial

parameters[15℄:

TABLE1. TCABRParameters.

Parameter Symbol Value

Majorradius R

0

0:61m

Minorradius a

b 0:22m

Plasmaradius a 0:18m

Toroidalmagnetield B

T

1:2T

Plasmaurrent Ip 70kA

Safetyfatorattheedge q 5

Eletronthermalenergyattheedge kTe 20eV

Durationoftheplasmadisharge 120ms

Eetiveatominumber Zeff 4

Plasmaurrentexponent 3

a

TheTCABRhasretangularross-setion,sobisthe

in-sribedirumfereneradiusinthisross-setion.

−1.00

−0.50

0.00

0.50

1.00

(R−R

0

)/b

−1.25

−0.75

−0.25

0.25

0.75

1.25

Z/b

−I

h

+I

h

suface r

t

=b

t

Figure6.TCABRross-setionwhereitisshownsome

equi-libriummagnetisurfaesandthesymbolsandÆindiate

theurrentondutorloations.

In Fig. 6, we see a TCABR vessel ross-setion

('

t

=0)andsomeequilibriummagnetisurfaes

repre-sentedin termsof ylindrialoordinatesystem. Also

itis possibleto observe thesurfaer

t =b

t

where the

nonuniformly distributed urrentsegmentsare. These

equilibriumsurfaeshavealmostirularross-setions

andtheShafranovshift,due tothe toroidalgeometry,

islearlyseenfromtheinnerones.

Fig.7showsthesameequilibriummagnetisurfaes

ofFig.6representedintermsofanonialoordinates.

0

π

/2

π

3

π

/2

2

π

ϑ

0.00

0.01

0.02

0.03

0.04

0.05

J

−Ih

+Ih

Figure7. Equilibriummagnetisurfaes depitedinterms

ofanonialoordinates.

Although wehavebeen doingmost of our

alula-tionsintermsofbothpolartoroidaloordinatesystem

(r

t ;

t ;'

t

)andanonialoordinatesystem(J;#;t),it

(6)

ommonlyused loalpolaroordinate system(r;;').

The relationship between this oordinate system and

theylindrialoordinatesystemisasfollows:

R = R

0

ros(); (38)

= '; (39)

Z = rsin(): (40)

Fig. 8 shows the same surfaes that are shown in

Fig.7,butnowintermsoftheloalpolaroordinates.

Fromnowon,wewillusetheloalpolaroordinate

systemtopresentthePoinareross-setionweobtain

fortheTCABRtokamak.

When the perturbation is turned on, the

mag-netisurfaetopologyhangesnotablyandmanyisland

hains appeardue totheresonantinterationbetween

the equilibrium and the perturbing magneti elds.

There is amain hain of vemagneti islandsaround

the equilibrium surfae with q = m0

n

0 =

5

1

and many

otherssatelliteislandhainsas well.

0

π

/2

π

3

π

/2

2

π

θ

0.00

0.04

0.08

0.12

0.16

0.20

r(m)

+Ih

−I

h

Figure8. SurfaesshowninFig.7nowdepitedintermsof

theloalpolaroordinates ('=onstant).

Inreasing the perturbing urrent, these island

hains overlapand generateasizablehaotield line

region. If the perturbing urrent is not large enough,

this haoti region does not reah the tokamak

ves-selwallbeause therestill are somemagneti surfaes

that are not destruted between the vessel wall and

thehaotiregion. An exampleof thisproess anbe

seen in Fig. 9 where a Poinare ross-setion for the

TCABR is shown orresponding to the following

per-turbing strength D

B 1

(a)

B

T E

=2:310 3

(I

h

=1:5 kA,

(m ;n )=(5;1)and=0:59).

0

π

/2

π

3

π

/2

2

π

θ

0.00

0.04

0.08

0.12

0.16

0.20

r(m)

+I

h

−I

h

Figure9. Poinare ross-setion forthe TCABRtokamak.

TheEMLparameters are: Ih =1:5 kA,(m0;n0) =(5;1),

Nr=4and=0:59.

Inreasing further the perturbing urrent, the last

unperturbed surfae whih is loated between the

haoti region and thevessel wall isdestruted.

Con-sequently,ahaotieldline mayreahthevesselwall

after anite numberof turns aroundthe onnement

hamber. AnexampleofthisisshowninFig.10where

a urrent I

h

= 3:2 kA produes the EML perturbing

ationwith strength D

B 1

(a)

BT E

=5:010 3

. Theother

parametersarethesameasinFig.9.

0

π

/2

π

3

π

/2

2

π

θ

0.00

0.04

0.08

0.12

0.16

0.20

r (m)

−Ih

+Ih

Figure10. Poinareross-setionfortheTCABRtokamak.

TheEMLparameters are: I

h

=3:2 kA,(m

0 ;n

0

) =(5;1),

N

r

=4and=0:59.

AsanEMLeetivenessestimationwealulatethe

averagenumberofturns,hn

i,ittakesforahaotield

line to hit thevessel wall. Westart withan ensemble

ofN =2000uniformlydistributed initialpointsin the

haotiregionandwealulatehn

ias follows:

hn

i=

1

N N

X

i=1 n

i

; (41)

where n

i

is the number of turns it takesfor the i-th

haoti eld line starting at the i-th initial point to

(7)

With hn

iweestimateanesapetimerequired for

an ionized impurity partile to hit the vessel wall.

This esape time is given by

=

2R0hni

v

T

where

v

T =

q

2k

B T

mp

is the partile thermal veloity, k

B T is

the thermal energy and m

p

is the partile mass. We

hoosetheBerylliummass(m

p

=1:5010 26

kg)

be-ause itsatomi numberZ =4is almost equalto the

TCABR plasmaeetiveatominumberZ

eff .

TakingintoaounttheperturbingurrentI

h =3:2

kA, the esape time is

28 ms. This esape time

is almost onefourth of thetypialdisharge duration

=120ms. Therefore,theEMLanbeativated

dur-ingtheplasmadisharge. Asweuseathermalveloity,

this estimationmayunderevaluatepossibleeetsdue

to theollisionsbetweenveryfastpartiles(inthetail

of theveloitydistribution) andthetokamakwall.

V Conlusions

A oneptual design for a set of EML rings was

pro-posed, whih took into aount toroidal geometry

ef-fets. The magneti eld of suh a set of EML rings

wasalulatedbyusingthesameoordinatesystemas

fortheequilibriumeld.

ConsideringtheEML ringsationas asequeneof

impulsive perturbations and looking at the eld line

dynamifromaHamiltonianpointofviewweobtained

a sympleti map, in terms of angle-ation variables,

whihembodiesthefollowingimportantharateristis:

(i)itresultsdiretlyfrom theperturbing magneti

eld expressions;

(ii)ithasaontrolparameterintroduedtomath

theatualequilibriumeld linepathand

(iii)itpresentsmagnetiislandswithdierentsizes

and nonuniform poloidal distribution when they are

representedintermsofloalpolaroordinates.

We applied this sympleti map for the TCABR

tokamak onditions to estimate an impurity esape

time. The esape time we estimated was almost one

fourth of the disharge duration, so the EML rings

ould be used eetively to improve the plasma

on-nement.

Referenes

[1℄ F.Karger andK.Lakner, Phys.LettersA61 (6), 385

(1977).

[2℄ W. Feneberg and G. H. Wolf, Nul. Fusion 21, 669

(1981).

[3℄ N.Ohyabu,J.S.DeGrassie,etal.,J.Nul.Mater.121,

363(1984).

[4℄ S.C. MCool, A. J. Wootton, et al., Nul.Fusion 29

(4),547(1989).

[5℄ Y. Shen, M. Miyake, et al., J. Nul. Mater. 168, 295

(1989).

[6℄ A.Vannui,I.C.NasimentoandI.L.Caldas,Plasma

Phys.andControlledFusion31,147(1989).

[7℄ N.Ohyabu,Nul.Fusion21,519(1981).

[8℄ R.Yoshino,T.Kondoh,etal.,Plas.Phys.Contr.Fusion

39,313(1997).

[9℄ P. Helander, L. G. Eriksson and F. Andersson, Phys.

Plas.7(10),4106(2000).

[10℄ E. C. da Silva, I. L. Caldas and R. L. Viana, Phys.

Plasmas8(6),2855 (2001).

[11℄ E.C. daSilva, I.L. Caldasand R.L. Viana,

\Bifur-ations and Onset of Chaos on the Ergodi Magneti

LimiterMapping",tobepublishedinChaos,Solitons&

Fratals(2001).

[12℄ M.Y.Kuinski,I.L. Caldas,etal.,J.Plas.Phys.44,

303(1990).

[13℄ E. C. da Silva, I. L. Caldas and R. L. Viana, IEEE

Trans.onPlasmaSiene29(4),617(2001).

[14℄ A. H. Boozer and A. B.Rehester, Phys.Fluids 21,

682(1978).

[15℄ I. C. Nasimento et al., \ The TCABR Tokamak:

Overview, Operational Regimes and Limits", in these

Imagem

Fig. 1 shows the ontravariant omponents of the
Figure 3. Shemati diagram of an Ergodi Magneti
Figure 4. Contravariant omponent B 1
Figure 6. TCABR ross-setion where it is shown some equi-
+2

Referências

Documentos relacionados

widen the TCAqs apabilities in hardware and software, inluding new VME stations and speial.. GPIB ards that will allow for the reation of loal

on nitrogen gas, normally used as optial alibration method for eletron density measurements.. in Thomson sattering was realized, and the intensity of both detetors was

The results of experiments on Alfv en wave urrent drive and plasma heating in the TCABR tokamak.. are analyzed with the help of a numerial ode for simulation of the diusion of

spheromak is studied using the priniple of minimum rate of energy dissipation..

ratio (S/N) during beam emission spetrosopy of the Li beam injeted into the plasma, speially if.. density utuation measurements

The analysis of the energy and partile balane in the system plasma-relativisti runaway.. beam in TCABR, whih takes into aount only the ollisional mehanism of the heat

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of

(a) Soft X-ray and (b) hard X-ray signal intensities against the disharge voltages from neon and argon lling gases. with the two