• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
11
0
0

Texto

(1)

Theoretial Studies of Non Indutive

Current Drive in Compat Toroids

R.Farengo, A.F. Lifshitz, K.I. Caputi,N.R. Arista,

CentroAtomioBariloheandInstitutoBalseiro

S.C.de Barilohe,RN,Argentina

and R.A. Clemente

Institutode FsiaGlebWataghin

UniversidadeEstadualde Campinas

Campinas,SP, Brasil

Reeivedon26June,2001

Threenonindutiveurrentdrivemethodsthatanbeappliedtoompattoroidsarestudied.The

use of neutral beams to drive urrent ineld reversed ongurations and spheromaksis studied

usingaMonteCarloodethatinludesaompleteionizationpakageandfollowstheexatpartile

orbitsinaself-onsistentequilibriumalulatedinludingthebeamandplasmaurrents.Rotating

magneti eldsare investigated as a urrent drive methodfor spherial tokamaks by employing

atwodimensional modelwithxed ionsand masslesseletrons. Thetimeevolutionof theaxial

omponentsofthemagnetieldandvetorpotentialisobtainedbyombininganOhm'slawthat

inludestheHalltermwithMaxwell'sequations. Theuseofheliityinjetiontosustainauxore

spheromakisstudiedusingtheprinipleofminimumrateofenergydissipation. TheEuler-Lagrange

equationsobtained usingheliity balaneas aonstraintare solvedto determinetheurrent and

magnetieldprolesoftherelaxedstates.

I Neutral beam urrent drive

The use of neutral beams to sustain the urrent in

a eld reversed onguration (FRC) reator was

pro-posed many years ago [1℄. More reently, laboratory

experiments where a neutral beam is injeted into an

existing FRC havebeenperformed[2℄. Unfortunately,

thelifetime of these experimentsismuh shorterthan

the slowingdown andthermalizationtimes and

there-foreourresults,whihapplytoasteady-statesituation,

annotyetbeomparedwiththeexperimental

observa-tions. Spheromaksareformedandsustainedbyheliity

injetionandtheuseofalternativemethodsisgenerally

not onsidered. However, usingneutralbeamsto

pro-duepartoftheurrentouldreduetheamplitudeof

the utuationsrequired for heliity injetion urrent

drive thus improving the onnement. This behavior

has been observedin reent RFP experiments [3℄. In

addition, the use ofneutral beams will resultin

addi-I.1 Monte Carlo ode and equilibrium

The Monte Carlo ode employed in this study

fol-lowsthe trajetoriesof an ensemble of beam partiles

movingin aself-onsistentMHDequilibrium. The

ex-at orbits are needed beause the large radial

exur-sions of the energeti beam partiles prevent the use

of gyro-averaging. Neutral partiles are injeted and

theodealulatestheirionization,stoppingand

ther-malization. Thisinformationisusedtoreonstrutthe

spatial distribution of the beam density, urrent and

transferredpowerandfore insteadystate.

Theionizationproessesinludedareionizationby

Coulomb ollisionswith ions and eletrons, ionization

by harge exhange and multistep proesses: i.e.,

ex-itationfollowedbyionization. Theeet ofCoulomb

ollisionsisdesribedusingaFokker-Plankollision

op-erator and the momentum and energy transferred to

eletronsandionsareevaluatedseparately. The

(2)

netiaxis. It isassumed tobeoldandnon divergent

andisonsideredto beapointsoure(negligibleross

setion). Settingthevaluesoftheneutralinjetion

ur-rent(I

N

), theenergy of thebeam partiles(E

N ) and

the impatparameter (b), thebeamis ompletely

de-termined.

x

y

z

r

Beam

s

b

Figure1. Injetiongeometry.

The plasma equilibria are solutions of the

Grad-Shafranov equation with an extra term representing

the beamurrent density. We assume that the beam

pressureissmallomparedto theplasmapressureand

thereforenegletthebeamontributiontothepressure.

Thetemperatureisonsidereduniformandequalto500

eVforbotheletronsandions. Withthese

approxima-tions,theGrad-Shafranovequationanbewrittenas:

r

r 1

r r +

2

z 2

= 16

3

r 2

dP

d 8

2

2

dI 2

d 8

2

r

j

b (1)

where is thepoloidal ux funtion,I isthepoloidal

urrent (setto zerofor FRCs), j

b

is thebeamurrent

densityandP istheplasmapressure. Weassumethat

the pressure and poloidal urrent are related to the

poloidaluxthough:

P( )=G

0 "

0 D

2

0

2 #

I 2

( )=I 2

0

0

2

(2)

whereG

0 andI

0

areonstants,

0

isthemagnetiux

atthemagnetiaxisandDisthehollownessparameter.

Theequation is rstsolved withj

b

=0and G

0 is

de-terminedbyrequestingthatB

z (r

s

;0)=B

0

. This

equi-partiles. Then, we run the Monte Carlo ode with

this equilibrium and alulate j

b

. Introduing j

b into

eq.(1)anewequilibriumis alulated. Thisproedure

isrepeateduntil thesolutionsonverge.

I.2 Ionization and trapping

In the ode, a partile is onsidered lost when it

reahesthe ends ofthe plasma orwhen itsradius

be-omeslargerthanthewallradius. FortheFRC

param-eters onsidered in this study, the fration of neutral

partilesthat isnotionizedisnegligiblesmall. For

in-jetionenergiesbelow40keV,thelossesaresigniant

only for b & 27m. As E

N

inreases, the maximum

impatparameterwhih resultsinompleteionization

beomessmaller. Thepartiles reah thehigh density

region even when ionization ours farfrom there; all

thepartilesinjetedwithbbetween15and25mross

thenull. ThisisseeninFig. 2whihshowsthespatial

distributionofbeamionsafterompletingtheirrst

or-bit. Itislearthattherearesigniantdiereneswith

respettodevieswithalargetoroidaleld,wherethe

beamenergyandtheinjetiongeometryareseletedin

orderto trapthebeamlosetotheplasmaore.

b=26 cm

b=16 cm

b=21 cm

a)

b)

c)

(3)

Thesituationin spheromaksis dierentdueto the

preseneofatoroidaleldandalosettingux

on-server. Partilesionizedinsidetheseparattrixan

nev-erthelesshitthewalldueto theirlargeLarmorradius.

In addition, thetoroidal eldproduesafundamental

hange in the behavior of the partiles. This an be

seen omparing Fig. 3, with Fig. 2. For b smaller

than the radius of the magneti axis (32 m)

ioniza-tion an our over a wide region and this results in

abroadinitialpartile distribution. Whenb=32m,

mostpartilesareionizedandtrappedlosetothe

mag-neti axis. Finally, when b > 32 m the partiles are

trappedinorbitsthatosillatearoundagivenux

sur-fae. Theamplitudeofthis osillationdepends onthe

injetion energy. Anotheronsequeneof thepresene

of a toroidal eld is that a fration of the partiles,

whihdepends onthe injetionenergyandb,beomes

trappedinbananatypeorbits. ThisisshowninFig. 4,

whih presentsa plot of lost and trapped partiles as

afuntion oftheinjetionenergyforthreevaluesofb.

Atlowinjetionenergy,alargefrationofthepartiles

beometrapped inbananaorbitswhile athigh energy

the dominant eet is partile losses due to ollisions

withthewall.

b=20 cm

b=32 cm

b=40 cm

a)

b)

c)

Figure3.Spheromak,spatialdistributionofbeamionsafter

20

40

60

80

100

15

20

25

30

35

40

45

50

55

b=20 cm

b=32 cm

b=40 cm

L

o

ss

+

B

anan

a (

%

)

E (keV)

Figure4. Spheromak,lostandtrappedpartilesasa

fun-tionoftheinjetionenergy.

I.3 Current drive

Fig. 5showsthebeamplasmaurrentasafuntion

oftheinjetionurrent(Fig. 5a)andenergy(Fig. 5b)

forFRCswithhollow(D=0:5)andpeaked(D= 10)

proles. Atlowinjetionurrentthebeamurrent

in-reaseslinearly. Athigherurrents,thedeviationfrom

alineardependene is due to theinreasein theloal

eldanddensityprodued bythebeamurrentin the

highplasma. Thiseetismorenotieableforpeaked

equilibria. Thedependeneofthebeamplasmaurrent

ontheinjetionenergyisompliatedduetothe

varia-tionoftheionizationrosssetion andstoppingpower

withenergy. Athigh energy,thebeamplasmaurrent

issigniantlysmallerforpeakedequilibriadue tothe

higherdensityproduedbytheeetdisussedabove.

In spheromaks, the beam plasma urrent shows a

strongerdependene upon theimpat parameterthan

inFRCs. This isseenin Fig. 6awhihpresentsaplot

ofI

b

asafuntion ofbforE

N

=20keV andI

N =100

A. Themaximumurrentisobtainedwhenbis

approx-imatelyequal to the radius of the magnetiaxis (b

0 ).

Thisistheresultofaompetitionbetweentwoeets.

Whenbislargerorsmallerthanb

0

,thefrationoflost

plustrappedpartilesinreasesasshowninFig. 4. On

theotherhand,thedensityandstoppingare largerat

themagneti axis. Fig. 6bshowsthatat lowinjetion

urrent(I

N

<100A)I

b

inreases almost linearlywith

I

N

and that ,again, the maximumurrentis obtained

whenb=b

0

. Thedependene of I

b

withthe injetion

energyis shown in Fig. 6 for threevalues of the

im-patparameter. Theasewith b=b

0

(4)

0

50

100

150

200

250

300

0

20

40

60

80

100

D=-10

D=0.5

I

b

(k

A

)

I

N

(A)

10

20

30

40

50

0

10

20

30

40

50

60

70

80

D=-10

D=0.5

I

b

(k

A

)

E (keV)

a)

b)

Figure5. FRC,beamplasma urrentas afuntiononthe

injetionurrentandenergy.

Fig.7showsthespatialdistributionsofplasmaand

beam densities, beam urrent and transferred power

for a peaked FRC equilibrium with E

N

= 20 keV,

b =21m and I

N

= 100 A. The peak in theplasma

densityisduetotheeetofthebeamurrentuponthe

equilibrium disussedabove. Thebeamdensityshows

two radial peaks whih are due to fat that in their

radialosillationsthepartilesspendmoretimeatthe

turningpointsthusinreasingthedensityinthisregion.

A similar eet an be observed in the beam urrent

distribution. Thepowertransferredtotheplasmadoes

not show two peaks beause itdepends upon the

val-uesofthebeamand plasmadensities. Inthis asethe

peakintheplasmadensityislargeenoughtooverame

thedouble peakedstruture ofthebeamdensity. Fig.

8 shows similar plots for a spheromak with the same

values of I

N and E

N

and b =32 m. It anbe seen

that the plasma density does not hange appreiably

due to the beam and that the beam urrent, density

and powerremain well loalized aroundthe magneti

axis.

20

22

24

26

28

30

32

34

36

46

48

50

52

54

56

58

60

I

b

(k

A

)

b(cm)

0

20

40

60

80

100

0

20

40

60

80

100

120

b

=20 cm

b

=32 cm

b

=40 cm

I

b

(k

A

)

I

N

(A)

20

40

60

80

0

50

100

150

200

250

b

=20 cm

b

=32 cm

b

=40 cm

I

b

(k

A

)

E

N

(keV)

a)

b)

c)

Figure 6. Spheromak, beamplasma urrent as a funtion

oftheimpatparameter,injetionurrentandinjetion

en-ergy.

Plasma Density

Beam Density

Beam Current

Power Transfer

a)

d)

c)

b)

Figure 7. FRC, spatial distribution of plasma and beam

densities,beamurrentandtransferredpowerfor EN=20

(5)

Plasma Density

Beam Density

Beam Current

Power Transfer

a)

d)

c)

b)

Figure 8. Spheromak, spatial distribution of plasma and

beam densities, beam urrent and transferred power for

E

N

=20keV,b=32mandI

N

=100A.

II Rotating magneti eld

ur-rent drive in spherial

toka-maks

Rotating magneti elds (RMF) have been used to

driveurrentin Rotamaks[4℄ andFRC[5℄. Although

thesedeviesgenerallyoperatewithoutastationary

az-imuthal(toroidal)magnetield,somerotamak

experi-mentsinludedaondutorattheaxisofthedisharge

vessel, produing ongurations whih are similar to

spherial tokamaks (ST) [6℄. Due to the urrent

in-terestin STs, whih haspromptedthe onstrutionof

severalnew devies, the developmentof RMF urrent

driveasan eÆientmethodfor this oneptwould be

ofgreat importane.

II.1 Physial model and equations

Theongurationonsideredis showninFig. 9. It

onsistofaninnitelylongannularplasmaolumnwith

inner radiusr

a

andouterradius r

b

. Insidetheolumn

r<r

a

thereisauniform,stationary,axialurrent

den-sitythat produesthevauumtoroidaleld. Theoils

thatproduethetransverse,rotatingmagnetieldare

assumed to be far from the plasmaand their eet is

introdued viatheboundaryonditionsimposed at r

(r

>> r

b

). The ions are onsidered to be xed and

the eletrons are desribed using an Ohm's law that

ontainstheHallterm:

r

a

r

b

r

c

Figure9. Crosssetion oftheongurationemployed.

E=j+ 1

en

(jB) (3)

where is the resistivity, whih weassume to be

uni-form. UsingOhm's lawand Maxwell'sequations aset

of oupled equations for B

z and A

z

anbe obtained.

Sinethe ontribution of the uniform axial urrent to

A

z

anbealulatedanalytially,weseparateA

z intwo

parts: A

z = A

z;va +A

z;pl

, where A

z;va

ontains the

ontribution of the stationary axial urrent and A

z;pl

theontribution of the plasma and the externaloils.

Assumingthattherotatingmagnetieldproduedby

theoils anbewritten as:

B rot

r

= B

!

os(!t )

B rot

= B

!

sin(!t )

andnormalizingthetimewith!,theradiuswithr

b and

theamplitudeofthemagnetieldwithB

!

weobtain

thefollowingset ofdimensionlessequations:

B

=

1

2 2

r 2

B+

^ r

^r r

2

A

A

r

2

A

A

^r B

tor

^ r

(4)

A

=

1

2 2

r 2

A+

^ r

A

^r B

tor

^ r

B

A

B

^r

(5)

where:

^ r=

r

r

; =!t; B =

B

z

B

; A=

A

z;pl

B r

(6)

d

andB

tor

isthevauumtoroidaleldatr^=1,

normal-izedto B

!

. Thetwodimensionless parameters, and

,aredenedas:

= r b Æ =r b 0 ! 2 1=2 ; = !;e e;i = B ! en

whereÆisthelassialskindepth,

!;e

istheeletron

ylotron frequeny alulated with the amplitude of

theRMFand

e;i

istheeletron-ionollisionfrequeny

( e;i =ne 2 =m e

). When>>1, theeletronsanbe

onsidered magnetized by the RMF. Knowing A and

B, the other magneti eld omponents and the

ur-rentdensityanbeeasily alulated.

II.2 Numerial method and boundary

onditions

The omputational domain is divided in three

re-gions. In 0 ^r < ^r

a

, region I, there is a uniform

axial urrent and no plasma. Sine A ontains only

theontribution oftheplasmaandtheRMF wehave:

r 2

A =0. Sine there are noazimuthal orradial

ur-rents in this region, B must be uniform (but an be

time-dependent). Inside the plasma, r^

a

< ^r < 1,

re-gionII,wesolve Eqs. 4and 5. In 1<^r <r^

, region

III, there is vauum and therefore B is uniform and

r 2

A=0.

Atr^=r^

weset:

A(^r

)=r^

sin( ) 1 e = 0 ; (7)

wheretheexponentialisintroduedtoallowforaslow

"turn on" of the rotating eld and ^r

is taken large

enoughfortheresultsto beindependentofitsspei

value. Atr^=1and ^r=r^

a

, theradialderivativeofA

must be ontinuous (B

= A

z

=r). To obtain the

resultspresentedbelow,thevalueofBinregionIIIwas

keptonstantthroughouttheomputationbutitisalso

possibleto introdueauxonserverandadjustB

af-tereahtimesteptosatisfyaxialuxonservation. In

regionI,Bisuniformbutnotonstant(intime)andwe

alulate itsvalueusing Stoke'stheorem. Considering

airumferene ofradiusr^

a

+h,where histheradial

gridspaingin regionII,weanwrite:

B(I)B(^r

a )= 1 r^ 2 a ( Z 2 0 A (^r a

+h;)r^d Z ^ ra+h ^ r a

d^rr^ Z

2

0

dB(^r;) )

(8)

d

The equation for the evolution of A

in region II is

obtained from the -omponent of Ohm's law, using

E=-A=t.

II.3 Results

Normalizedquantitiesareemployedintheplots

pre-sentedbelowand the eÆieny is dened as theratio

between the azimuthal plasma urrent and the

ur-rent that would be produed if all the eletrons

ro-taterigidly with frequeny!. Fig. 10 isaplot ofthe

steady-stateeÆienyvs. B

tor

for =16:6;=11:07

and r

a

= 0:15: The eÆieny is 1, as in FRCs, when

B

tor

=0anddereasesto0.15forB

tor

=10. Itshould

benoted,however,that duetothelargerradiusofthe

plasmainatokamak,asomparedwithanFRC,an

ef-ienyof0.15ouldstillresultinasigniantplasma

urrent. Fig. 11 presents a similar plot for = 14:9

andthesamevaluesofandr

a

asFig.10. InanFRC,

the same values of and result in inomplete eld

in Fig. 11 that forsmall values ofB

tor (B

tor

.1:26)

therearetwosteady-statesolutions. Theinitial

ondi-tions determine thebranh towardswhih the system

evolves. IfwesetB

tor <B

rit

tor

andstartwithaplasma

olumnthathasnoazimuthalurrent,thesteady-state

solutionfollowstheloweÆienybranh(dashedline)

inFig. 11. WhenB

tor

beomeslargerthantheritial

value,andthesameinitialonditionsareemployed,the

eÆieny ofthesteady-statesolutionjumpstothefull

line in Fig. 11. Toaess thehigh eÆieny solution

for B

tor

less than the ritial value (dotted line) it is

neessaryto startwith asteady-state solutionhaving

B

tor > B

rit

tor

and slowly derease B

tor

. The

eÆien-ies obtainedin the high eÆieny branh of Fig. 11

( =14:9),areverysimilartotheeÆieniesobtained

with = 16:6 (Fig. 10). This indiates that, in the

preseneof asteadytoroidaleld, plasmashaving

dif-ferentvaluesofandisplayaverysimilarbehavior. In

fat,thesimilaritybetweenthehigheÆienyregimeof

Fig. 11and theregimeof Fig. 10extendsto theother

(7)

et.). Inwhatfollowswewillonsidertworegimes: the

regimeofFig. 10,with=16:6,andtheloweÆieny

regime ofFig. 11,with=14:9

0

2

4

6

8

10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

e

ff

ici

en

cy

B

tor

Figure10. EÆienyvs. steadytoroidaleldfor=16:6;

=11:07and^ra=0:15.

0

2

4

6

8

10

0.0

0.2

0.4

0.6

0.8

1.0

ef

fi

ci

en

cy

B

tor

Figure11. EÆienyvs. steadytoroidaleldfor=14:9;

=11:07and^ra=0:15.

The eet of the steady toroidal eld on the

az-imuthal urrent density prole is shown in Fig. 12,

whihpresentsaplotoftheaveraged(over)j

vs. r

forthesameparametersasFig. 11andthreevaluesof

B

tor

. WhenB

tor

=0(fullline)thereisalargeregion,

up to r

= 0:5, inside the plasma with negligible

ur-rentdensityandanarrowregion,r 0:9, onthe

out-side where the eletronsrotate rigidly with frequeny

!. WhenB

tor

=0:5(dashed line)the urrentdensity

inreases on the inside, in the region 0:3 r 0:5,

and dereases for r 0:6, giving an overall inrease

inthetotalplasmaurrent. Finally,whenB

tor

=1:15,

theurrentdensityisomparabletothatobtainedwith

B

tor

=0 forr0:6 andsigniantlysmallerat larger

radius. The ase with = 16:6 is shown in Fig. 13,

whihalsopresentsaplotof<j

>vs. rfor3valuesof

B

tor

. When B

tor

= 0the eletronsrotate rigidlyand

aregionwithnegligible,evenreversed,urrentdensity

appearsresultinginaredutioninthetotalurrent. As

B

tor

inreasesfurtherthewidthofthisregioninreases.

0.0

0.2

0.4

0.6

0.8

1.0

-16

-14

-12

-10

-8

-6

-4

-2

0

2

B

tor

=0

B

tor

=0.5

B

tor

=1.15

<j

θ

>

r

Figure12. Averaged(over)azimuthalurrentdensityas

a funtionof normalized radius for = 14:9; = 11:07,

^ r

a

=0:15(loweÆienybranh).

0.0

0.2

0.4

0.6

0.8

1.0

-16

-14

-12

-10

-8

-6

-4

-2

0

2

B

tor

=0

B

tor

=4

B

tor

=8

<j

θ

>

r

Figure13. Averaged(over)azimuthalurrentdensityas

a funtionof normalized radius for = 16:6; = 11:07,

^

ra=0:15(higheÆienybranh).

Experimental measurements and theoretial

alu-lations in ongurations with a steady toroidal eld

have shown the existene of poloidal urrents, whih

are generally diamagneti. We studied this issue for

the two onditions indiated above. For the low

eÆ-ienyregime of Fig. 11 thereis asigniant

diamag-neti eet, whih is shown in Fig. 14. This gure

presentsaplotoftheratiobetweentheaveraged(over

) azimuthal eld and the vauum eld as afuntion

ofr. ForB

tor

=0:5thediamagnetiwellextendsfrom

r

=

0:3totheouterplasmaboundary,withamaximum

redutioninthetotaleldofover20%(omparedwith

the vauum value). For B

tor

= 1:15 the width and

depth of thewellderease but the diamagnetism

(8)

0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.80

0.85

0.90

0.95

1.00

B

tor

=0.5

B

tor

=1.15

<B

θ

,to

t

>/B

va

c

r

Figure 14. Ratio between the averaged, total, azimuthal

eld and the vauum eld for = 14:9; = 11:07 and

^

ra=0:15(loweÆienybranh).

II.4 Disussion

As a rst step towards assessing the possibility of

using RMF urrent drive in STs, we studied the

ef-fet of a steady toroidal eld on this method. Our

work presentstwomain improvementswhenompared

topreviousstudies. Therstistheuseofa

ongura-tionwhih, albeit2D, inludes aholeat the enter of

theplasmathusprovidingabetterrepresentationof a

tokamak. The seond is the use of afully 2D

numer-ial ode whih solves the time dependent equations

obtainedfromthebasiphysialmodelwithoutfurther

assumptions.

Although we did not attempt to make a detailed

omparisonwiththeexperimentalresultsofRef. [6℄,it

islear thatmany ofthequalitativefeatures observed

in these experiments are reprodued by the low

eÆ-ieny branh of Fig. 2. Our results show that for

somevaluesoftheexternaltoroidaleld,therearetwo

steady-statesolutionswithdierenteÆienies. When

thesteadytoroidaleldislargeomparedtothe

rotat-ingeld,aseofinterestforSTs,theeÆienyissmall

but the total urrent ouldstill be signiant if

oper-ation at frequeniesoftheorder of 10 6

Hzis possible.

Furtherstudiesshouldbedonetondthebest

operat-ingregimeforSTsandtheorrespondingeÆienyand

requiredpower. Inaddition,improvedphysialmodels

should bedevelopedtoremovesomeof themost

riti-alassumptionsemployedinthisstudy. A stepinthis

diretionhasbeenreentlydonebyMilroy[8℄who

em-ployedan MHDmodel tostudy RMF urrentdrivein

FRCs.

III Minimum dissipation states

for ux ore spheromaks

sus-tained by heliity injetion

Theuse ofheliity injetionto sustainaspheromakis

veryattrativebeause of its simpliity and high

eÆ-ieny. Ingeneral,heliityinjetionurrentdriveis

ex-plained byassuming that the plasma undergoes some

formofrelaxationthatallowsforaredistributionofthe

magneti ux. In this ontext, relaxation priniples

provide a relatively simple method to predit the

-nalstateofplasmasdrivenbyheliityinjetion. Taylor

andTurner[9℄appliedthewellknownminimumenergy

prinipletoauxorespheromaksustainedbyheliity

injetion through the polar aps. Although this

prin-iple has been suessful at explaining the reversal of

themagnetieldintheRFP,itsuseindrivensystems

remainsquestionable. Insuhsystems,otherpriniples

that allow for the introdution of balane onstraints

(injetionrate=dissipationrate)ouldbemore

appro-priate. One suh priniple, the prinipleof minimum

rate of energy dissipation, has been already used to

alulate the relaxed states of tokamaks sustained by

heliityinjetion[10℄[11℄.

Inthis paperweemploythe prinipleof minimum

rate of energy dissipation to alulate relaxed states

of a ux ore spheromak sustained by heliity

inje-tion. Althoughthegeometryonsideredisverysimple,

theresultouldbeofinterestforthereentlyproposed

PROTO-SPHERAexperiment[12℄.

III.1 Minimization, Euler-Lagrange

equations

We assume that the plasma is stationary (v =

0) and minimize the Ohmi dissipation rate

sub-jet to the onstraints of heliity balane (injetion

rate=dissipation rate) and rB = 0. This is done

byintroduingthefollowingfuntional:

W = Z

j 2

dV

0 Z

jBdV+ I

'BdS

Z

(9)

where istheplasmaresistivity,'istheapplied

ele-trostati potentialand and areLagrange

multipli-ers. In eq.(9), the rst three terms in the RHS are,

respetively, the Ohmi dissipation rate, the heliity

dissipationrateandtheheliityinjetionrate. Setting

the rst variationof W equalto zero theanellation

of thevolumetermgivesthefollowingEuler-Lagrange

equation:

rj j+

0

2

r=0 (10)

the boundary onditions needed to solve this

equa-tion are obtained from the physial situation

onsid-ered (ux orespheromak sustained by heliity

inje-tionthroughthepolaraps)andfrom theanellation

ofthesurfaetermin ÆW.

III.2 Results

Equation(10)is solved numeriallyusing

ylindri-aloordinates(=0)fortheongurationshown

in Fig. 15, whih onsists in a ylindrial ux

on-serverwith radiusequalto its height(0.4 m) andtwo

eletrodes. Theradius ofthe eletrodesis onefthof

the radius ofthe ux onserverandit is assumed, for

simpliity, that the magnetield ontheeletrodesis

uniformandisanexternallyontrolableparameter. In

reality,theuxpassingthroughtheeletrodesdepends

ontheurrentowingintheexternaloils(notshown)

and the plasma urrent. Our assumption is that the

urrent in the external oils is adjusted until the

de-siredeld ontheeletrodesisobtained.

Themethodofsolutiononsistsin guessingavalue

for and solving the Euler-Lagrange equations.

Us-ing the alulated urrent and magneti eld proles,

the heliity injetion and dissipation rates are

alu-lated and ompared. If they agree the value of is

aepted, if not a newvalue is hosen and the

proe-dure repeated. Fig. 16 shows ux ontours obtained

for V

e =B

z = 10

3

V=T. The solutionin Fig. 16 a has

=12:2157m 1

andanenergydissipationrate(W

dis )

of 1:56 10 12

W while the solution in Fig. 16 b has

= 12:2223 m 1

and W

dis

=1:6010 12

W. It is lear

that altoughbothare solutionsof theEuler-Lagrange

equations(bothareextremaofthefuntional), the

so-lution thatminimizesthedissipationrateistheonein

Fig. 16 a. For 12:2157m 1

<<12:2223m 1

solu-tions with almost no open ux are obtainedbut they

Figure15. Congurationemployedfortheuxore

sphero-mak.

Fig. 17 showsasequene of solutionsobtainedfor

dereasingvaluesof V

e =B

z

. It islear thatdereasing

V

e =B

z

redues the size of the losed ux region. The

behaviorof the Lagrangemultipliers orresponding to

thesolutionswithhighandlowdissipationisshownin

Fig. 18, whih presents a plot of as a funtion of

log(V

e =B

z

). It is seenthat both valuesare verylose

and that the dierene between them dereases when

V

e =B

z

dereases. Infat,bothvaluesof areloseto

theeigenvalueoftheequationrj=jwithj:^n=0

at the boundary for elongation equal to 1 [13℄. Fig.

19presentsaplotofthetotalplasmaurrent(onopen

andlosedsurfaes)asafuntionoftheappliedvoltage

forB

z

=0:1T. Thisgureshowsthatsigniant

ur-rentsan be obtainedfor reasonablevalues of applied

voltageandmagnetield. Ofourse,thiswilldepend

on the value of the resistivity, whih was assumed to

be2:710 6

minthis alulation. Toonlude,we

present in Fig. 20 2D plots of the toroidal magneti

eldandthetoroidalurrentdensityfortheminimum

dissipation solution with V

e

= 1000V and B

z = 1T

(seeFig. 16). This showsthat ifalargeenough

mag-neti eld anbeprodued largeurrentsouldresult

(10)

0,010

0,020

0,030

0,04

0,05

0,06

0,07

0,08

0,09

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z(m

)

r(m)

-0,05

-0,04

-0,03

-0,024

-0,015

-0,006

0,0030

0,012

0,021

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z

(m)

r(m)

a

b

Figure16. Fluxsurfaesfor thetwosolutionswithV

e =B

z =10

3

V=T.

0,0026

0,005

0,008

0,010

0,013

0,016

0,018

0,021

0,023

0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z(

m

)

r(m)

0,010

0,020

0,030

0,04

0,05

0,06

0,07

0,08

0,09

0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z(

m

)

r(m)

0,007

0,014

0,021

0,028

0,04

0,04

0,05

0,06

0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z(

m

)

r(m)

0,04

0,09

0,13

0,18

0,22

0,27

0,31

0,36

0,40

0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

-0,20

-0,15

-0,10

-0,05

0,00

0,05

0,10

0,15

0,20

z(

m

)

r(m)

a

b

c

d

Figure17. Fluxsurfaesofthesolutionsobtainedfor variousvaluesofV

e =B

(11)

Figure18. ValueoftheLagrangemultiplierasafuntionof

log(V

e =B

z ).

Figure19. Plasmaurrentasafuntionofappliedvoltage

forBz=0:1T.

III.3 Disussion

We have shown that the relaxed states of a ux

ore spheromak alulated using the minimum

dissi-pation priniple have losed ux surfaes and

signi-ant plasma urrent. Although there are solutionsof

the Euler-Lagrangeequations whih satisfy the

heli-ity balane onstraint and have the open ux region

ontheoutside,theyhavehigherdissipationratesthan

thosewiththeopenuxontheinsideandthereforean

notbeonsideredastruesolutionsoftheminimization

problem. The Lagrange multipliers of both solutions

are very lose and their value is approximately equal

to theinverseof theeletroderadius. Future work on

thisproblemshouldinludetheuseof

anisotropi/non-uniform resistivity.

Aknowledgements

This work was partially supported by grantsfrom

the International Atomi Energy Ageny (ontrat N

10527/RI)andtheAgeniaNaionaldePromoion

Ci-entiay TenologiaofArgentina(PICT99). Oneof

the authors (RAC) would like to thank the Conselho

Naional de Desenvolvimento Cientio y Tenologio

(CNPq),Brazil,fornanialsupport.

0,15

0,20

0,25

0,30

0,35

0,40

0,45

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

1,44

1,46

1,48

1,50

1,52

1,54

µ

0

j

θ

/ B

θ

(m

-1

)

z(m

)

r(m)

0,15

0,20

0,25

0,30

0,35

0,40

0,45

-0,3

-0,2

-0,1

0,0

0,1

0,2

0,3

0,5

1,0

1,5

2,0

j

θ

(M

A

/m

2

)

z(

m)

r(m)

Figure20. 2Dplotsofthetoroidalmagnetieldand

ur-rentdensityforVe=1000V andBz=1T.

Referenes

[1℄ H.Momota,FusionTehnol21,2307(1992).

[2℄ Phys.Plasmas7,2294(2000)

[3℄ R.Bartiromo,Phys.ofPlasmas6,1830-1836(1999).

[4℄ I.R.Jones,Phys.Plasmas6,1950(1998).

[5℄ J. T. Slough and K. E. Miller, Phys. Rev.Lett. 85,

1444(2000).

[6℄ G.A. Collins,G.Durane, G.R.Hogg, J.Tendys, P.

A.Watterson,Nul.Fusion28,255(1988).

[7℄ R.D.Milroy,Phys.ofPlasmas6,2771 (1999).

[8℄ R.D.Milroy,PhysPlasmas7,4135(2000).

[9℄ J.B.Taylor and M. F.Turner, Nul.Fusion29, 219

(1989).

[10℄ R. Farengo y J. R. Sobehart. Plasma Phys. Control.

Fusion36,1691(1994).

[11℄ K.I.CaputiandR.Farengo,PlasmaPhys.andContr.

Fusion43,795-804(2001).

[12℄ F.Alladio,privateommuniation(1999).

[13℄ J.M.Finn,W.M.ManheimerandE.Ott,Phys.Fluids

Imagem

Figure 2. FRC, spatial distribution of beam ions after rst
Figure 4. Spheromak, lost and trapped partiles as a fun-
Figure 5. FRC, beam plasma urrent as a funtion on the
Figure 8. Spheromak, spatial distribution of plasma and
+6

Referências

Documentos relacionados

used in designing Damavand plasma position ontrol system.. This model is used for

widen the TCAqs apabilities in hardware and software, inluding new VME stations and speial.. GPIB ards that will allow for the reation of loal

on nitrogen gas, normally used as optial alibration method for eletron density measurements.. in Thomson sattering was realized, and the intensity of both detetors was

The results of experiments on Alfv en wave urrent drive and plasma heating in the TCABR tokamak.. are analyzed with the help of a numerial ode for simulation of the diusion of

ratio (S/N) during beam emission spetrosopy of the Li beam injeted into the plasma, speially if.. density utuation measurements

The analysis of the energy and partile balane in the system plasma-relativisti runaway.. beam in TCABR, whih takes into aount only the ollisional mehanism of the heat

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of

(a) Soft X-ray and (b) hard X-ray signal intensities against the disharge voltages from neon and argon lling gases. with the two