• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número1"

Copied!
5
0
0

Texto

(1)

Calulations of Alfven Wave Heating

in TCABR Tokamak

A.G. Elmov, R.M.O. Galv~ao,

InstituteofPhysis,

UniversityofS~aoPaulo,05315-970,SP, Brazil

S.A. Galkin,A.A. Ivanov, and S.Yu. Medvedev

KeldyshInstituteof AppliedMathematis,RAS,Mosow,Russia

Reeivedon3July,2001

AtwodimensionalodeALTOK,whihisdesignedforalulatingplasmaheatingdueto

radiofre-quenyeldsintheAlfvenandinIonCylotronRangesofFrequeniesinaxisymmetritokamaks,

isusedtoanalyzeAlfvenwaveabsorptioninmultispeiesplasmasinTCABR(TokamakChauage

Alfven Brasilien) [Nul.Fusion30, 503 (1996)℄. A good agreement between the results obtained

with ALTOK ode alulations and with atwo dimensional kineti ode [Phys. Plas., 6(1999)

2437℄isshownforAlfvenwavedissipationinhydrogenplasmas. TheglobalAlfvenwaveresonane

ofthem=0modeisfoundtobethebestandidatetoexplainsomeheatingregimesinTCABR.

I Introdution

ThemethodofAlfvenwave(AW)heatingisbased

on the mode onversion eet[1℄ (named a loal AW

resonane(LAR)[2,3℄)oftheradiofrequeny(rf)eld,

indued by an external antenna, into a kineti AW

that eetively dissipates on eletrons. The analysis

of Alfven wave absorption in tokamaks with two

di-mensional (2D) numerial odes has its originon the

MHD plasmamodeldevelopedin Ref[4℄. Lately, this

model wasextendedto ionylotronrangeof

frequen-ies (ICRF) byinludingionylotron resonanewith

ollisional dissipation (see Ref [5℄). However, the

ef-fetsof wave dissipation oneletronswasmodeledby

anartiialdampingtooveromethelogarithmi

diver-genein LAR.Somekineti2D-odesfor AW heating

weredevelopedfortheaxis-symmetritokamakplasma

geometry [6,7,8℄. However,nonloal eetsin the

ki-netidieletri tensor produed diÆulties in the

pro-edure for solving theMaxwell equations numerially,

espeiallyintheviinityoftheionylotronresonane.

Reently,theMHD plasmamodelwasextended to

amulti-uidplasmamodelwhihinludeseletronand

two speies ion uids [9℄. This two-dimensional

nu-merialode(namedALTOK)an help to resolvethe

problem of numerial solution at the loal AW

reso-nanebeauseitinludesnaturallytheeletron-ion

ol-lision dissipationandthe eletroninertia in the

paral-lel omponent of the dieletri tensor. In this ase, a

slow quasi-eletrostati Alfven wave (SQAW) [10, 11℄

mayappearat the mode onversionmagneti surfae.

This model issuÆientfor analysisof Alfvenand fast

magneto-soniwavesinICRF.

Here, using the ALTOK ode, we present

rele-vant results of numerial alulations related to the

AlfvenwaveheatingexperimentsinTCABR [12℄,

tak-ing into aount arbon and oxygen impurities, and

omparesomeresultswith theorrespondingones

ob-tainedthroughthekinetiode[7℄.

Thepaperisorganizedasfollows. InSetionII,we

briey desribethe toroidalmulti-uid plasma model.

In Setion III,we present theresult of alulationsof

Alfven wave dissipation in the TCABR tokamak.

Fi-nally,weanalyzesomeheatingregimesinTCABRand

summarizethemainresultsofouralulations.

II Plasma model

The standard plasma model inludes Maxwell

equationsandthedieletritensor,whihisalulated,

in ourase, from multi-uid MHD equations (see, for

example[13℄). Assumingharmonidependeneintime

and intoroidalangle 'forthewavemagnetield B,

(2)

E= X n E n e in' i!t

; B= X n B n e in' i!t

; j= X n j n e in' i!t ; (1)

theMaxwellequationsanbepresentedasfollows:

rrE ! 2 2 ^ I 4i ! ^ E= 4i! 2 j ext : (2) d wherej ext

isanexternaldrivingurrentintheantenna

andgeneralizedOhm'slawj=E^ isusedwith^being

thesuseptibilitytensorinaloalbasesofoordinates

e k = B 0 jB 0 j ; e N = r

jr j ; e ? =e k e N ; (3) 4i ! ^ = 0 N N? 0 N? ? 0 0 0 k 1 A ; (4)

where ispoloidal magnetiuxandtensoromponentsare

N = X ! 2 p (! 2 B ! 2 ) ; ? = X ! 2 p (! 2 B ! 2 ) ; (5) N? = X ! B ! 2 p !(! 2 B ! 2 ) ; k = X ! 2 p ! 2 ! 2 p;e

!(!+i

e )

; (6)

d

Intheequations

e

is theeletron-ionollision

fre-queny, !

p

, and !

B

are the plasma and ylotron

frequenies, respetively, for speies . The wave

ab-sorption powerdensityisgivenbyW =R e(jE

).

Ageneraltwodimensionalgridwithnon-orthogonal

quadrangular ells is used to disretize Eq.(2). For

theaxis-symmetri equilibrium,aquasiradial-annulus

grid, adapted to magneti surfaes, is applied. The

equilibrium odePOLAR-2D[14℄ isemployedto solve

theGrad-Shafranovequationfor andobtainthegrid

adapted to magneti surfaes. However an arbitrary

grid anbealso usedif theequilibrium magnetield

isdiretlyspeied.

III Alfven Wave Heating

Here,using the2Dkineti[7℄and MHDodes[9℄,

we present relevant results of numerial alulations

disharge 4893 in Ref [12℄) and ompare them with

oldTCA results[15℄. The simulationshave been

ar-riedoutassumingairular ross-setiontokamak

ge-ometry with the following parameters: minor radius

a=0:18m; major radiusR

0

=0:615m; antenna

sur-faeradiusb=0:2m;wallradiusd=0:23m,toroidal

magnetield B

0

=1:1T, plasmaurrentI

p

=54kA,

for theohmi stage,and I

p

= 57kA, for the rf stage.

Thekinetiodealulationsarearriedoutassuming

atemperatureprole given by T

=T 0 (1 r 2 =a 2 ) 2 ;

with=e;i, T

e0

=500eV andT

i0

=160eV,

respe-tively. Wehosethevaluesofthesafetyfatortobein

theinterval1:1 q

0

1:6 at the magneti axis, and

4:4q

0

6:4,attheplasmaboundary. These

parame-tersareonrmedwithASTRAtransportode[16℄

al-ulations (see disussion below). Finally, the eletron

densityproleisassumedtobeofparaboliform with

amaximumentraldensityn

0

=3:210 19

m 3

anda

pedestal value n

a

=110 18

m 3

. The impurity and

(3)

an-wavenumbers. Therealstrutureof newTCABR

an-tennasystemistakenintoaountthroughoeÆients

alulatedin Ref.[17℄. Inouralulations,weonsider

only oneantennamode that orrespondsto the main

omponentgiven bytheFourieranalysisof theatual

antennasystem.

Beause of small pressure orretions and to

sim-plify alulations, we use a fore-free equilibrium in

theALTOKodealulationswiththetoroidalurrent

density rj

' = (1

2

)

1

and the plasma density is

n=n

0 (1

)

3

;where

isnormalizedpoloidal

mag-netiuxfuntion,sothat

=0attheaxisand

=1

at the plasma boundary. Tohave the plasma density

andurrentprolesadjustedtotheprolesusedinthe

kinetiode,weuse

1

=1:6;

2

=0:95and

3 =0:7.

InFig.1, weshowthat there is reasonableoinidene

between the orresponding plasmaproles of the

AL-TOKandkinetiodeforthepoloidal angle=2.

Figure1. Density ne andtoroidal urrent prolerj' over

theradiusatthepoloidalangle=2oftokamakrossetion;

thesolidlinesaretheALTOKodeproles,thedottedlines

markprolesusedinthekinetiode.

Here we onsider wave dissipation in the Alfven

wave ontinuum. Generally, in the ylindrial model,

theequation that governsthe Alfven waveontinuum

anbewrittenin theform,

! 2

? (r)=k

2

k (r)

2

;

? =

X

!

2

p

(! 2

!

2

) (7)

Forhydrogenplasmas,theequationfortheAlfvenwave

ontinuumanbesimpliedto

!

A =

k

k

A

q

1+k 2

k

2

A =!

2

;i ;

A =

B

0

p

4n

e m

i ; k

k =

(nq+m)

R

0 q

(8)

In Fig.2, we show the M = 1;N = 4-antenna

impedaneforpurehydrogenplasmasandplasmaswith

arbon impurity (apital letters are used for antenna

vauum modesand lowerase are used for modes

a-tually exited in the plasma). We an observe spikes

of the impedane related to the m = 0 and m = 1

globalwaveresonanessituatedbelowAlfvenwave

on-tinuum. Theorrespondingwavedissipatedpower,

al-ulated with the ALTOK ode for frequenies f =

4:2MHz and 4:6MHz, is presented in Fig.3.

Usu-(8) for hydrogen plasmas does not depend on the q

prole. In this ase, the dissipated wave power

pre-sentedin Fig.3aisstrongly peakedin the plasmaore

and it an be eetively used for plasma ore

heat-ing. Note that our alulations onrm the global

Alfven wave resonane that was fond experimentally

in old TCA deuterium plasmas [15℄ with the

param-eters: B

0

= 1:2T,n

0

= 2:6 10 19

m 3

, q

0

= 1:1,

M= 1;N = 2;f =2:5MHz.

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

0.0

0.5

1.0

1.5

f

c,C+3

Im

pedance (au)

frequency (MHz)

Figure2. TheantennaloadingimpedaneIMN plottedas

a funtion of the generator frequeny f for poloidal and

toroidal wave numbers M = 1;N = 4 of the antenna

spetrum. Theimpedaneurvesarealulatedwiththe

ki-netiode(solidforpurehydrogen,dotedwith0:2impurity

plasmas)anddashedlineorrespondtheMHDode

alula-tionsforplasmawith0:2%-arbonimpurityTheplasma

pa-rametersaren

0

=3:210 19

m 3

;T

e0

=500eV,B

t

=1:1T,

q

0

=1:1,q

a =4:4.

Beause of an unontrollable inrease of the light

impurities,suhasarbonandoxygen,suppliedbythe

hamberwallduring the rf pulse, theglobal wave

fre-queny and Alfven wave ontinuum an be strongly

modied if the Alfvenwavefrequeny is about of the

ion ylotron frequeny. In Fig.4, we show the

ylin-drial Alfven ontinuum (7) modiationin a plasma

with light impurities in shot # 4893. This situation

is also alulated using 2-D odes. For example, in

TCABR hydrogen plasma with 0:2% of three times

ionizedarbon (or fourtimes ionizedoxygen),the

y-lotron frequeny is f = 4:2MHz and it an aet

Alfven wave dissipation. That eet is also

demon-stratedinFig.2wheretheAlfvenwaveontinuumis

de-stroyedforfrequeniesaboutthis ylotron frequeny.

In this ase, the better heating regimes an be our

about f = 4:6MHz that is above the C +3

12

(4)

Figure3ab.Distributionofdissipatedwavepowerover

toka-mak ross-setion in the spike of the m = 0-GAW

reso-naneinhydrogenplasmasshownforf =4:2MHz(a)and

f = 4:6MHz with 0:2alulations with M = 1;N = 4

antennaongurationforentralplasmadensityn0=3:2

10 19

m 3

.

IV ASTRA alulations

Theresultsof therfheating disharge# 4893 [12℄

havebeenanalyzedwith theASTRA ode [16℄

. Before

the rf pulse (the referene time is 53ms) the plasma

parameters are: urrent I

p

= 54 kA, loop-voltage

U(a) 2.77V, line-averaged density n

e

= 2:110 13

m 3

,

dia

=0:49(see Fig.4). Assumingthe

Alator-saling oeÆient, the data in Fig.5 an be adjusted

with Z

ef

=5:2. Inthemiddleof therf pulse (the

ref-erenetimeis61.5msatthemaximumoftheurrent),

andonsideringasmalldensitygrowton

e

=2:210 13

m 3

withthesameprole,thedatainFig.4(I

p

=57kA,

U(a) 1.74 V and

p

0:1 for the referene time

61.5 ms) have been adjusted with P

rf

= 60kW and

Z

ef

5:4 with Alator-saling diusion. The result

indiates aneÆientAlfvenwaveheating,asmall

ur-rent drive I

d

1:2kA and urrent drive eÆieny

k =(2en R !)0:02A=W :

-1

0

1

3

4

5

6

7

+3

C

12

+5

O

16

Alfvén continuum

generator frequency

fre

que

nc

y

(R-R

0

)/a

Figure 4. Plot of the ylindrial Alfven ontinuum taken

fromEq(7)anddierentarbonandoxygenimpurity

y-lotron resonanes in hydrogen plasmas for onditions in

Fig.2.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.0

0.5

1.0

1.5

2.0

2.5

3.0

(b)

n

e

U

oh

U

rf

U

cd

n

e[

13]

cm

-3

, U

(V

)

radius (m)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(a)

T

e,rf

T

e,oh

P

rf

T

e

(

keV

),

P

rf

(W

/10/

cm

3

)

Figure 5. Distribution of eletron temperature (a), loop

voltage and dissipated wave power is alulated with the

ASTRAodeandshownforohmi(t1=53ms,dottedlines)

andrf(t2 =61:5ms,dashlines)stageinN4893disharge.

Loopvoltageunderrfpowerisshownwithrfheating

(dash-dotline)andtakingintoaount1.2kAurrentdrive(solid

(5)

Inonlusion,weansay:

Alfven wave absorption of oupled side-bands

har-monis exited by M = 1 antenna auses a broad

powerdepositionatm=0loalAWresonanethat

sur-passthepowerdeposition ofglobal AW attheplasma

enter;

hoosing generator frequeny properly in m = 0

Alfven wave ontinuum, Alfven wave absorption an

beonentratedintheplasmaore;

the ASTRA ode alulations onrm Alfven wave

heating T

e

(0) 250eV and non-indutive urrent

I

d

1:2kA driven by one module antenna with

60kWdissipatedpowerintheplasma.

toanalyzetheAWdissipationproperly,theeet of

ion ylotron resonanezones introdued by partially

ionizedimpuritiesshould betakenintoaount.

Aknowledgments Authors thankful to

Dr.G.V.Pereverzev for the help with ASTRA

alu-lations. ThisworkissupportedbytheMinistryof

Si-ene and Tehnology/Brazil, through Pronex Projet

andFAPESP(FoundationoftheStateofS~aoPaulofor

theSupport ofResearh).

Referenes

[1℄ V.V. Dolgopolov, K.N. Stepanov, Nulear Fusion 5,

276(1965).

[2℄ J. Tataronis and W. Grossman, Z. Phys. 261, 203

(1973).

[3℄ A.HasegawaandCh. Uberoi,TheAlfvenwave

(Teh-nialInformationCenterU.S.DOE,1982).

[4℄ K.Appert,B.Balet,R.Gruberetal.,Nul.Fusion22,

903(1982).

[5℄ L. Villard, K. Appert, R. Gruber and J. Valavik

Comp.Phys.Rep.4,95(1986).

15th European Confer. Controlled fusion and plasma

physis.Dubrovnik,May(1988),partIII,p.944.

[7℄ G. Amarante-Segundo, A.G. Elmov, D.W. Ross,

R.M.O. Galv~ao, I.C. Nasimento Phys. Plasmas, 6,

2437(1999).

[8℄ A.Jaun inReentResearh Developments in Plasmas

(TransworldResearhPublishing,Trivandrum,Kerala,

India,2000).

[9℄ S.A. Galkin, A.A. Ivanov, S.Yu.Medvedev and A.G.

Elmov, Multi Fluid MHD Model And Calulations

Of Alfven Wave Spetrum And Dissipation In T

oka-maks. To be published in Comp. Phys.

Communia-tions(2002).

[10℄ D.W.Ross,G.L.ChenandS.M.MahajanPhys.Fluids

25,652(1982).

[11℄ J.ValavikandK.AppertNulFusion31,1945(1991).

[12℄ L.F. Ruhko, E. Lerhe, R.M.O. Galv~ao et al. The

AnalysesofAlfvenCurrentDriveandWaveHeatingin

TCABRTokamak.Tobepublishedinthisissue

Brazil-ianJ.ofPhysis(2002).

[13℄ V.L.Ginsburg Propagation of Eletromagneti Waves

inPlasma(GordonandBreah,NewYork,1961)

[14℄ L. Degtyarev,A.Martynov, S.Medvedev etal.

Com-put.Phys.Commun.103,10(1997).

[15℄ G.A.Collins,F.Hofmann,B.Joyeetal.,Phys.Fluids,

29,2260(1986).

[16℄ G.V.Pereverzev,P.N.Yushmanov,A.Yu.Dnestrovskii

et al. ASTRA, An Automati System for Transport

Analysis ina Tokamak,IPP 5/42, Max-Plank

Insti-tute fur Plasmaphysik EUROATOM Assoiation,

D-8046Garhing,Germany,Aug.1991.

[17℄ L.F. Ruhko, E. Ozono, R.M.O. Galv~ao, I.C.

Nasi-mento, F.T. Degasperi, E. Lerhe, Fusion Eng. Des.

Imagem

Figure 1. Density ne and toroidal urrent prole rj' over
Figure 3ab. Distribution of dissipated wave power over toka-

Referências

Documentos relacionados

used in designing Damavand plasma position ontrol system.. This model is used for

widen the TCAqs apabilities in hardware and software, inluding new VME stations and speial.. GPIB ards that will allow for the reation of loal

on nitrogen gas, normally used as optial alibration method for eletron density measurements.. in Thomson sattering was realized, and the intensity of both detetors was

The results of experiments on Alfv en wave urrent drive and plasma heating in the TCABR tokamak.. are analyzed with the help of a numerial ode for simulation of the diusion of

spheromak is studied using the priniple of minimum rate of energy dissipation..

ratio (S/N) during beam emission spetrosopy of the Li beam injeted into the plasma, speially if.. density utuation measurements

The analysis of the energy and partile balane in the system plasma-relativisti runaway.. beam in TCABR, whih takes into aount only the ollisional mehanism of the heat

The inrease of toroidal magneti eld leads to gradients in the mean plasma radial.. proles and the onset of