• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
7
0
0

Texto

(1)

Studies on the Anisotropi Properties of MgB

2

O.F. de Lima

InstitutodeFsiaGlebWataghin,

UniversidadeEstadual deCampinas-UNICAMP

13083-970Campinas,SP,Brasil

Reeivedon28February,2002

Thispaperpresents a reviewon reported anisotropi properties of MgB

2

. The rstdiret

mea-surementofananisotropisuperondutingpropertyinMgB2wasahievedforthebulknuleation

eldH2,insamplesofalignedrystallites. Aratio H ab

2 =H

2

1:7wasfoundbetweentheritial

eldparalleltotheab planeandparalleltotheaxisdiretion. Further,detailedstudyoftheH2

angulardependeneonrmeditsbulkorigin,inontrastwithwhatwouldbeexpetedforthe

sur-faenuleationeldH

3

. AFermiveloityanisotropywasevaluatedtobeV ab

F

1:6V

F

,assuming

an isotropi orderparameter. Forananisotropi s-wave pairingsymmetry ithas beenestimated

that V ab

F

2:5V

F

. Dierent H

2

anisotropy hasbeen foundbydierentauthors, usingdierent

samples, measuredinvariedtemperatureranges. Other reportedanisotropi properties ofMgB2

inthesuperondutingstatearetheeldpenetrationdepth,oherenelength,andenergygap

; inthenormalstate arethemagnetoresistane,ompressibility,andthermalexpansion. Sofar,

mostofthereportedresultshavebeenobtainedusingalignedrystallites,-axisorientedthinlms

andsub-millimeterrystals.

I Introdution

Thedisoveryof superondutivityat 39Kin

Magne-siumDiboride(MgB

2

)[1℄hasbroughtnewexitement

to theareaofbasiandapplied researhon

superon-dutingmaterials.

SeveralstudieshavealreadypointedoutthatMgB

2

has a good potential for appliations [2-5℄ in view of

the relatively high values of ritial urrent density,

J

, and the suessful preparation of wires and lms.

However, intense magneti relaxation eets,

assoi-atedwiththermallyativateduxreepanduxjumps,

havebeenfoundtolimittheJ

valuesathighmagneti

elds[6℄. Thismeansthateetivepinningentershave

tobeadded[7℄intothematerialmirostruture,in

or-dertohaltdissipativeuxmovements.

The observation of an isotope eet [8,9℄, a

BCS-typeenergygap[10℄, aswellasband struturestudies

[11-13℄ suggest the ourrene of a phonon-mediated

superondutivityin MgB

2

. Manyother experimental

[14-18℄andtheoretial[19,20℄workshavepointedalso

to the relevane of a phonon-mediated interation, in

the framework of the BCS theory. However, the

pos-sibility of hole superondutivity, assoiated with the

nearly lled boron planar p

x;y

orbitals, has also been

suggested [21℄. Questions have been raisedaboutthe

relevant phonon modes, as well as about the gap

en-ergy and Fermi surfae anisotropies. A onsiderable

a broad rangeof values, between 2.5 and 5.0, for the

gap ratio 2

0 =kT

, where

0

is the gap energy at T

= 0and k is the Boltzmann onstant. As a

ompari-son,theBCStheoryintheweakouplinglimitpredits

[22℄ 2

0 =kT

3:5, foranisotropigapenergy. Inan

eorttointerpretthis puzzlingsituation,multiple gap

models [19℄ as well as a general model of anisotropi

s-waveorderparameter[18,20℄ havebeenproposed.

The strongly anisotropi rystalline struture of

MgB

2

hasbeenknownforalongtime. Itseemed

there-forereasonablewhenspeiheatstudiesdonein

poly-rystalline samples [15℄ as well as band struture

al-ulations [11℄, pointed to the possible anisotropi

na-tureoftheeletroniandmagnetipropertiesofMgB

2 .

The rst diret measurementof ananisotropi

super-onduting property was ahieved for the bulk

nule-ationeldH

2

,in samplesofalignedMgB

2

rystallites

[23℄. Itwasfound aratioH ab

2 =H

2

1:7, betweenthe

ritialeldparalleltotheab planeandparalleltothe

axisdiretion. Theanisotropibehaviorofsome

nor-mal state properties, like ompressibility [24, 25℄ and

magnetoresistane[26℄, havealsobeenreported.

Following, a brief review of some aspets

regard-ingsamplepreparationwillbepresentedin SetionII.

In Setion III, a detailed analysis of the bulk

(2)

anisotropipropertiesofMgB

2

willbebrieyreviewed.

Finally, in Setion V, a onlusion will be presented.

For a more omplete review on the superonduting

propertiesofMgB

2

seeRef. [27℄.

II Sample preparation

The ompound MgB

2

is known to our in

equilib-rium with an exess of Mg, for temperatures above

650 Æ

C [28℄. By 1953 its AlB

2

-type rystal

stru-ture was determined, using X-ray diration studies

[29, 30℄. This layered struture belongs to the spae

groupP6/mmm,andonsistsofalternatingtriangular

layersof Mg atoms and graphite-like hexagonallayers

of Batoms. The unit elllattieparameters typially

reported[29,30,31,32℄arearounda=3.085

Aand

=3.521

A.

A ommon route to prepare MgB

2

polyrystalline

samplesstartsbymixingthepureelements,MgandB,

in the atomi ratio B:Mg= 2:1. Beause of the

rela-tivelyhighvapourpressureofMgitisadvisedtoreat

themixturesealedinanevauatedtubeorontainerof

anappropriatematerial(e.g. Ta,Nb,Fe,Mo, BN).In

ordertoavoidoxidationofthetube/ontainerexternal

surfae, espeially in aseswhenopen-airfurnaes are

used,thesealedtube/ontainerissealedinsideaquartz

ampoule,in aresidual atmosphereof argongas.

Typ-ially,areationtimearound2hoursattemperatures

between700 Æ

Cand1000 Æ

Chavebeenused, followed

by ooling to room temperature. However, to obtain

smallsinglerystals,ahigherreationtemperature

be-tween1200 -1400 Æ

C andaddition of Mgin exessto

provideaninternalvapourpressureabove1bar,was

re-ported in1973 [31℄. This isessentiallythe sameroute

employedreentlybydierentgroups,toobtainMgB

2

rystallites having sub-millimeter sizes [23,33℄. A

dif-ferent approah onsists of reating the quasiternary

Mg-MgB

2

-BNsystem,at pressuresaround50barand

temperaturesrangingbetween1400-1700 Æ

C,fortime

periods between 5to 60 minutes. In this ase MgB

2

rystals reahing linear dimensionsup to 0.7 mm has

beenreported[32℄.

MgB

2

thin lms havealsobeengrownsuessfully,

using pulsedlaserdeposition [4,34℄ aswellasby

ele-tronbeamevaporationofBandMg[35℄. Insomeases

textured thin lms were obtained,onsisting ofgrains

that havetheirrystallographi axisaligned

perpen-diularly tothesubstrateplane. Anintriguingfeature

of thin lms is that their T

ranges typially between

25-37K,alwaysbelowthebulkvalueof39K.

II.1. Aligned MgB

2

rystallites

WhilepolyrystallineMgB

2

isveryeasytogrowand

is a readily available reagent, good-sized single

rys-tals of this material, with lineardimensionsabove0.7

promisesto keep being a real hallenge. However, by

themiddleofFebruary2001,intheearlydaysofintense

ativitiesonthenewMgB

2

superondutor,samplesof

alignedMgB

2

rystalliteswerepreparedatUNICAMP

[23℄. Firstly,aweaklysinteredsampleofMgB

2

was

syn-thesised,startingfromastoihiometrimixtureof99.5

at%pureBand99.8at%pureMg, bothinhipsform

(JohnsonMattheyEletronis). Theloosemixturewas

sealed in aTa tube under Ar atmosphere, whih was

then enapsulated in a quartz ampoule and put into

the furnae. The ompound formation was proessed

byinitiallyholdingthefurnaetemperatureat1200 Æ

C

for1hour,followedbyadereaseto700 Æ

C(10 Æ

C/h),

thento600 Æ

C(2 Æ

C/h),andnally toroom

temper-atureatarateof100 Æ

C/h. Theweaklysintered

prod-utwaseasilyrushedandmilledbyemployingmortar

andpestle. Usingastereomirosopeoneouldobserve

atthisstageaveryuniformpowder,onsistingmainly

of shiny rystalliteswith aspet ratiosranging from 2

to 5 and linear dimensions going up to 50 m. The

powder was then sieved into a range of partile sizes

between5-20m,whihallowedtherystallites

fra-tiontobemaximised to almost100%. Smallamounts

ofthepowderwerethenpatientlyspreadonbothsides

ofasmallpiee of paper,produinganalmost perfet

alignmentoftherystalliteslaiddownontopoftheat

surfae,as shown in theSEM pitureof Fig. 1. The

suess of this method relies on the rystallites

plate-likeshape,whihisindeedamarosopimanifestation

ofitsanisotropirystallinestruture. Fig. 2showsan

X-raydirationpattern(-2san)measuredonone

of the aligned sample, displaying only the (001) and

(002)reetions,omingfrom theMgB

2

phase. A

lat-tieparameter=3.5180.008

Awasevaluatedfrom

thesetwopeakpositions. Thetwosmallimpuritypeaks

markedwithasteriskswereindexedasSiO

2

. Theinset

ofFig. 2showsarokingurve(! san)for the(002)

peakthatrevealsanangularspread(FullWidthatHalf

Maximum)around4.6degrees,assoiatedwithasmall

misalignmentoftherystallites axis.

Figure 1. Sanning Eletron Mirosopy (SEM) piture

(3)

ma-20

30

40

50

60

70

80

0.0

0.5

1.0

1.5

2.0

2

θ

(deg)

In

te

nsi

ty

(

a

rb

. uni

ts)

*

*

(001)

(002)

15

20

25

30

35

0

1

2

3

o

~ 4.6

ω

(deg)

Figure2. X-raydirationpatternshowing onlythe(001)

and(002)peaksofMgB

2

,plustwospuriouspeaksindexed

asSiO2. Inset: rokingurve(!-san)forthe(002)peak,

showing anangular spread of about4.6 degreesalong the

rystallitesaxis.

Eletronmiroprobeanalysisdoneonfourdierent

areasbetweenthe MgB

2

rystallites, revealed the

fol-lowing averageonentration (in at%) of elements: O

(62.9), C (22.2), Ca (9.48), Si (1.48), Mg (1.44), Al

(1.37), K (0.09), Fe (0.50), Cr(0.21), Ni (0.09). The

rst eight elementsin this list were found also in the

omposition analysis made on the same type of

pa-per used (Canson, ref. 4567-114). Miroprobe

anal-ysis donealso on theinitial Mg and B revealed afew

small preipitates,smallerthan 10m andontaining

upto8at%Fe,onlyintheMghips. Thisonrmsthe

expetationofFebeingaommonimpurity[36℄in

om-merialMg, andsets ageneralonernon itspossible

eets,althoughreentreports[5,37℄havesuggestedno

negativeeetstothesuperondutivityofMgB

2 from

Fe additions. The average omposition found on top

of several rystallites, normalised to the whole MgB

2

formulaunit,was: Mg(30.80),O (2.20),Ca (0.17), Si

(0.07), Fe (0.06). Although Boron ontributeswith a

fration of66.6at%it doesnotshow-up inthe

miro-probeanalysisbeauseitistoolight. Theontaminants

foundontopoftherystallitesmostpossiblyamefrom

asurfaeontaminationausedbythealignment

teh-nique, whih required vigorous rubbing on top of the

powder, using a steel tweezerstip to spreadthe

rys-tallites uniformly. This is orroborated by a further

analysis done on top of several as-grown rystallites,

whihdetetedonlyMgandasmallamountofO

(pos-siblyfromMgO).Thisresultisonsistentwiththevery

smallsolidsolubilitylimitofabout0.004at%FeinMg,

whihis known toour[38℄ atthe solidiation

tem-peratureof650 Æ

C.Theinter-rystallitetypeofrubbish

showninFig. 1isattributedmainlytothepaper

abra-sion, whih produesavarieddistribution ofirregular

grainsofpaperfragments. Inordertoharaterisethe

superondutingandmagnetipropertiesofthealigned

rystallites several samples were mounted, onsisting

2

rystallite-painted paperandgluedwithAralditeresin.

Eahoneofthesesamplesontainsanumberof

rystal-lites estimated to bearound 6.510 5

, ending upwith

aneetivevolumeof0.065mm 3

. Thisvalueis

reason-ably lose to 0.060 mm 3

that wasevaluated from the

expetedslopeM/H =-1/4,whenthemagnetization

M ismeasuredataveryloweld H.

III H

2

anisotropy

H

2

anisotropyisoneofthemarosopimanifestations

of an anisotropi gap energy or an anisotropi Fermi

surfae, as well as a possible ombination of both

ef-fets[39,40℄. Therefore,itsstudyis ofparamount

im-portane to help understanding thebasi mehanisms

involvedin thepairinginteration. Samples ofaligned

MgB

2

rystallites, as desribed above, have been

em-ployed in detailed studies of the H

2

angular

depen-dene,providingalearidentiationofitsanisotropy

fatoranditsbulkorigin[23,41℄.

Figure3showstheanisotropisignatureoftheH

2

line in theeld interval0H 40 kOe. The

exper-imental points weretakenfrom thetransition onsetof

therealomponent(')ofACsuseptibility,measured

usingaPPMS-9Tmahine(QuantumDesign),withan

exitationeldofamplitude1Oeandfrequeny5kHz.

The insetshows anenlargedview ofthe '(T) urves

for H // ab (open symbols) and H // (solid

sym-bols),theeld orientationparalleltotheab planeand

parallel to the axis, respetively. The '(T) as well

astheM(T)(inset ofFig. 4) measurements,for H =

10Oe,showsharptransitionsatthesameritial

tem-peratureT

39K. Typially, someof the published

data on the tempera ture dependene of H

2

[42, 43℄

agree with the result displayed in Fig. 3 for H

2 //

ab. As an example, the data from Ref.[43℄ is plotted

in Fig. 3as stars. This mean that in polyrystalline

samplesthetransitionsarebroadened,showingthe

on-set atthehighesttemperaturethatorrespondsto the

highestritialeldavailable,whihisH

2 //ab.

TheratioH ab

2 =H

2

,betweentheupperritialeld

when H is applied parallel to the ab plane and when

it is along the diretion, was evaluated at dierent

temperatures,produingavaluearound1.7. From[22℄

H ab

2 =H

2 =

ab =

, H

ab

2

(T)=

0 =(2

ab

)H

2 (T)=

0 =(2

2

ab

), and using the Ginzburg-Landau (G-L)

meaneld expressionfortheoherenelength,(T)=

0

(1 T=T

)

0:5

,onends

0;ab 70

Aand

0; 40

A,

theoherenelengthatT=0intheabplanesandalong

the axis, respetively. Thequantum ofux,in CGS

units, is

0

= 2:0710 7

G m

2

. A mass anisotropy

" 2

= (H

2 =H

ab

2 )

2

0:3 is then found for MgB

2 ,

whihouldbeonsideredamildanisotropywhen

om-pared to thehighly anisotropi high-T uprates [44℄,

likeYBa

2 Cu

3 O

7 Æ ("

2

0.04)and Bi

2 Sr

2 CaCu

2 O

8+x

(4)

20

22

24

26

28

30

32

34

36

38

40

0

10

20

30

40

50

60

H

c2

(k

O

e

)

T (K)

H // ab

H // c

Müller

et al.

10

20

30

-0.20

-0.15

-0.10

-0.05

0.00

H (kOe)

0.01

1.00

10.00

20.00

30.00

40.00

χ

' (

a

rb

. u

n

its)

T (K)

Figure 3. Upperritial eld H2 vs. Temperature phase

diagram,for bothsampleorientations. Thestarsrepresent

the H2 vs. T line from Ref. [43 ℄. The inset shows the

realomponent' oftheasuseptibilityvs. temperature,

measured atseveralDCeldsfor bothorientations. Open

symbolsare for the H // ab urvesand solidsymbolsfor

H==.

Inorderto studytheH

2

angulardependene,

un-der axial applied elds, a speial sample rotator was

built[41℄withallpartsmahinedfromalowmagneti

teon rod. Magnetization measurements were

per-formedwithaSQUIDmagnetometer(modelMPMS-5,

made by Quantum Design). Fig. 4 shows the

mag-neti dependene of the magnetization in T = 25 K,

for afewrepresentativeangles, , betweenthe sample

axisandthemagnetielddiretion. TheZFC(Zero

FieldCooling)measurementsshowninthemainframe

look noisypossibly due to the eet of intense vortex

reep[6℄,ombinedwithaomplexregimeofux

pen-etration in thegranularsample of alignedrystallites.

Thus,theourreneofrandomweaklinksandthe

var-iedouplingbetweengrainsontributealsoto produe

a utuating behavior in the sample overall response.

However,inallasesitwaspossibletodeneH

2 (),at

therossingpointbetweenthehorizontal baselineand

the straightline drawnarosstheexperimental points

in theregion near the onset of transition. This linear

behaviorof themagnetizationlose to theonset is

in-deed expeted from the G-L theory [22℄. A onstant

paramagnetibakgroundwassubtratedfrom allsets

ofdata. InfatoneofthereasonsformeasuringatT=

25 Kis beauseat thistemperatureH

2

()ranges

be-tween28-36kOe,wheretheparamagnetibakground

isalreadysaturated[23℄.

Figure5displaysH

2

()for between-20degand

120deg. Thevertialerrorbarswereestimated to be

around1kOewhilethehorizontalerrorbars,of2.5

deg, almost oinide with the symbol size. The solid

agoodtoftheangulardependene,preditedbythe

3DanisotropiG-Ltheorytobe[22,39℄

H

2

()=H

2

os 2

()+" 2

sin 2

()

1=2

; (1)

where" 2

,isthemassanisotropyratio. Thebesttting

isobtained with " 2

0:39, implyingthat H ab

2 =H

2

1:62,whihisloseto thevalue1.7 antiipatedbyAC

suseptibility measurementsdonefor the two extreme

positions,at0and90degrees(seeFig. 3). InFig. 5

weseealsovedatapoints( =0,25, 65,85,90 deg)

markedwithstars,whihwereobtainedattheonsetof

transitionoftherealpartoftheomplexsuseptibility,

measured with an exitation eld of amplitude 1 Oe

andfrequeny5kHz.

-0.8

-0.6

-0.4

-0.2

0.0

20

40

H = 10 Oe

ZFC

FCC

T (K)

M (G

)

25

30

35

40

45

50

-6.0

-4.0

-2.0

0.0

T = 25 K

0 deg

65 deg

80 deg

90 deg

M (

G

)

H (kOe)

Figure4. ZeroField Coolingmagnetization measurements

asafuntionoftheappliedeld, for =0,65, 80, 90

de-grees. The bulk nuleation eld H2() is dened at the

rossing of the auxiliary straight lines and the horizontal

baseline(M=0). TheinsetshowsZFCandFCC

magneti-zationmeasurementsasafuntionoftemperatureforH=

10Oe,givingT39K.

TheratioH ab

2 =H

2

1:62remindstherelationship

predited for the surfae nuleation eld [45℄ H

3

1:7H

2

. However, this is learly not the ase for the

presented data, as one an see from the dash-dotted

urvein Fig. 5, whih is aplotof theexpeted

angu-lardependene ofthesurfaenuleation eldforthik

samples,givenby[46℄:

H()

H

3 sin

2

[1+ot (1 os)℄+ H()

H

2

(5)

where H

3

= H( = 90 Æ

) and H

2

= H( = 0 Æ

).

Thedashedurveinbetweenrepresentsthewell-known

Thinkham'sformula[22,47℄

H()

H ab

sin

2

+

H()

H

os

=1; (3)

whih is valid for the surfae nuleation eld in very

thin lms. Fromboth plotsoneseesthat a

harater-istifeatureofthesurfaenuleationeldisausplike

urve shape near = 90 degrees. This behavior

on-trastswiththesinusoidalshapefollowedbytheMgB

2

data displayed in Fig. 5. Thus, a strong support is

giventointerprettheobservedupperritialeldasa

genuinebulknuleationeld.

-30

0

30

60

90

120

30

35

40

45

c

H

θ

c

c

ab

H

c2

/ H

c2

~ 1.6

ab

H

c2

H

c2

aligned MgB

2

crystallites

T = 25 K

H

c2

(k

O

e

)

θ

(deg)

Figure5.Bulknuleationeld(orupperritialeld),H2,

asafuntionoftheangle,,betweenthesampleaxisand

themagnetielddiretion. Plotsoftheexpetedangular

dependene for the surfae nuleation eld, H3, in thik

samples (dash-dotted urve) and very thin lms (dashed

urve)are also shown. The stars at =0, 25, 65, 85, 90

degreesrepresentH

2

()obtainedattheonsetoftransition

oftherealpartofa suseptibilitymeasurements.

Several other studies have already onrmed the

H

2

anisotropy in MgB

2

. Measurements of resistive

transitions on three -axis oriented thin lms [48℄

showedanisotropyratios(H ab

2 =H

2

)of1.8,1.9and2.0,

the ratio inreasing with higher resistivity, orrelated

withamoreimpureoralloyedsample. Resistivity

mea-surementsdoneonsinglerystals,havingthemajor

lin-earsizearound0.5mm[32,33℄,showedanisotropy

ra-tiosloseto2.6. InRef.[33℄theauthorshavealsoshown

anisotropiH

1

linespointingtoH ab

1 =H

1

1:4,where

H

1

isthe lowerritialeld. However,oneshould be

aware about the large unertainty usually assoiated

with H

1

evaluations, mainly due to twofators: the

very slow departure from linearity, when leaving the

Meissnerregime,andthestrongdependeneon

demag-onveryleanepitaxialthin lms[26℄,gavearelatively

smalleranisotropyratioaround1.3in alarge

tempera-tureregionbetween2-32K.Amuhsmalleranisotropy

ratiovaluearound1.1 wasalsoreportedonapartially

textured, hotdeformed, bulkmaterial[49℄.

More reently the eet of temperature on H

2

anisotropyhasbeenreported byseveral groups.

Mea-surementsoftorquemagnetometryinMgB

2

single

rys-tals haveshownavariationfromH ab

2 =H

2

2.8at35

Kto 6at 15K [50℄. Resistivetransitions measured

insinglerystals[51℄,aswellasin-orientedthinlms

[52℄ havealso shown the same trend, although in the

rstaseH ab

2 =H

2

variedbetween2.2 and3.0when T

dereasedfrom39Kto30K,whilefortheseondase

it varied between 1.5 and 2.0 when Tdereased from

33Kto20K.Contrastingtheseexperimentalresultsa

theorybasedonatwo-gapmodelpreditsthatH ab

2 =H

2

shouldinreasefrom 1.5do2.4,whenTinreasesfrom

18Kto 39K[53℄.

TherelativelylargesatteringofvaluesfortheH

2

anisotropy ratio, going from 1.3 to approximately 6,

ould possibly be asribed to at least three fators.

One is the sample purity, sine it aets diretly the

energygapanisotropyatthemirosopilevel[39,40℄.

Theseondistheexperimentalriterionusedtodene

H

2 or T

2

, suh that a reliable bulk transition point

is atually guaranteed. The third fator is a possible

temperature dependene of the anisotropy ratio that

ouldbeoriginatedfromatemperaturedependentgap

anisotropy [20, 54℄. Therefore, results obtained with

samplesof dierent puritylevelsandmeasured at

dif-ferent temperatures should not be diretly ompared

withoutadetailed analysis.

Themarosopi H

2

anisotropyanbeaused by

an anisotropi gap energy orby an anisotropi Fermi

surfae, as well as by a ombination of both eets.

Assuminganisotropigap,onegets

ab =

=V

ab

F =V

F ,

sine[22℄ /V

F =

0

. Therefore, the datafor aligned

MgB

2

rystallites [23, 41℄ implies V ab

F

1:6 V

F , for

theFermiveloities withintheab planeandalong the

diretion. However,several experimental[15, 17,18℄

and theoretial [11, 12, 20℄ works have suggested an

anisotropi gap energy for MgB

2

. In partiular, two

works [18, 20℄ based on the analysis of spetrosopi

andthermodynamidataproposeananisotropis-wave

pairing symmetry, suh that the minimum gap value,

0

1:2 kT

, ours within the ab plane. Using

this result and assuming an isotropi Fermi surfae

theexpeted H

2

anisotropywouldbeH ab

2 =H

2 0:8.

This onits with all experimental results that show

learlyH ab

2 >H

2

. However,by allowingaFermi

sur-fae anisotropy in their model, Haas and Maki have

found that [54℄ V ab

F

2:5 V

F

in order to math the

ratio H ab

2 =H

2

1:6, at T = 25 K. Therefore, it

seemsthatthetwofundamental souresofmirosopi

anisotropyis aeting the H

2

anisotropy of MgB

2 in

opposite ways. As a onsequene of ombining both

eets to explaintheH

2

(6)

velo-paredwith theisotropigaphypothesis. Interestingly,

aalulationbasedonatwo-bandmodelhasalsofound

[55℄ V ab

F

2:5 V

F

, while a muh smaller value of

V ab

F

1:03 V

F

was found in a band struture

alu-lation usingageneralpotentialmethod[11℄.

IV Other anisotropi properties

Another anisotropi property already assessed in the

superonduting state of MgB

2

is the eld

penetra-tion depth [56℄. Using a radio frequeny tehnique

(T) wasmeasured in polyrystalline samples and its

anisotropi values were evaluated, from a theoretial

analysis,tobearound

ab 1200

Aand

2450

A.

Besides the strongly anisotropi rystalline

stru-ture of MgB

2

, three other normal state anisotropi

propertieshavebeenidentied,themagnetoresistane,

the ompressibility and the thermal expansion. The

magnetoresistane measuredat T =45K,in epitaxial

thin lms,wasfound[26℄toinreasemonotoniallyup

to 8%forH // and upto 13%forH //ab,whenH

goesupto 60T. Conerningtheompressibility

stud-ies,similarresultswereobtainedbytwogroups,one[24℄

usingsynhrotronX-raydirationandapplyingupto

6 GPa of pressure on the sample and the other [25℄

using neutron powder diration and applying up to

0.6 GPaofpressure. Theyfollowedtherelativelattie

parametersvariationasafuntionof appliedpressure,

at roomtemperature, andfound thatthe ompression

along the axisis about64% largerthanalong the a

axis. Ref.[25℄reportsalso that the thermalexpansion

(between11K-297K) alongtheaxisisabouttwie

that alongtheaaxis.

Althoughno experimentalresultson J

anisotropy

wasreported yet, it ould be antiipated that the

in-plane ritial urrent density values are expeted to

be at least about 60% higher than the values along

the axis diretion (H// ab). This result is

ex-peted beauseJ

is proportional to 2

, therefore[44℄

J

(H==)=J

(H==ab)

ab =

H

ab

2 =H

2

. Thismeans

that inordertooptimiseJ

inwiresorother

polyrys-tallineomponentssometexturizationtehniquewillbe

useful.

V Conlusion

Starting at the beginning of 2001 an intense ativity

hasbeendevotedtothestudyofthebinaryompound

MgB

2

, sine it wasfound to be a superondutor for

temperatures below 39 K. The anisotropi rystalline

strutureofMgB

2

onsistsoftriangularlayersof

Mag-nesiumatoms sandwihedbetweenhexagonallayersof

Boronatoms. Therefore,itshould indeed beexpeted

someanisotropyinitsphysialandhemialproperties.

Thispaperpresentedabriefreviewon thealready

reportedanisotropipropertiesof MgB

2

,in the

super-onduting state (e.g. upper ritial eld H

2 , eld

gap ) as well as in the normal state (e.g.,

magne-toresistane, ompressibility, thermal expansion). So

far, the reported results have been arried out using

alignedrystallites,-axis orientedthin lmsand

sub-millimiter rystals. However, good-sized single

rys-talswithlineardimensionsabove1mmarestillhighly

desirable. This will open the possibility of new

ad-vanes,makingeasierto probediretlyotherexpeted

anisotropiproperties, likethe ritialurrentdensity

and the normalstate resistivity, among others. Sine

impurity satteringaets diretly the gap anisotropy

it will be also of interest to know the eets of

rys-talpurityontheanisotropyfators. Mostpossiblythis

ouldbeoneofthemainreasonsforthesatteredvalues

observed inthe H

2

anisotropyratio, rangingbetween

1.3and6.

Aknowledgements

I wouldlike to thankmy loseollaborators C.A.

Cardoso,R.A.Ribeiro,M.A.AvilaandA.A.Coelho,

fortheirhelpintheanisotropystudiesontheMgB

2

su-perondutor. Iaknowledgethenanialsupportfrom

theBrazilianSieneAgeniesFAPESPandCNPq.

Referenes

[1℄ J. Nagamatsu, N. Nakagawa, T. Muranaka, Y.

Zeni-tani,andJ.Akimitsu,Nature410,63(2001).

[2℄ D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A.

Polyanskii,J.Jiang,S.Patnaik,X.Y.Cai, D.M.

Feld-mann, A. Gurevih, A.A. Squitieri, M.T. Naus,C.B.

Eom,E.E.Hellstrom,R.J. Cava,K.A.Regan,N.

Ro-gado,M.A.Hayward,T.He,J.S. Slusky,P.Khalifah,

K.Inumaru,andM.Haas,Nature410,186(2001).

[3℄ P.C.Caneld, D.K.Finnemore,S.L.Bud'ko,J.E.

Os-tenson,G.Lapertot,C.E.Cunningham,andC.

Petro-vi,Phys.Rev.Lett.86,2423(2001).

[4℄ C.B.Eom,M.K.Lee,J.H.Choi,L.J.Belenky,X.Song,

L.D.Cooley,M.T.Naus,S.Patnaik,J.Jiang,M.Rikel,

A.Polyanskii, A. Gurevih, X.Y. Cai, S.D. Bu, S.E.

Babok, E.E. Hellstrom, D.C. Larbalestier, N.

Ro-gado,K.A.Regan,M.A.Hayward,T.He, J.S.Slusky,

K.Inumaru,M.K. Haas, andR.J. Cava,Nature411,

558(2001).

[5℄ S. Jin, H. Mavoori, C. Bower, and R.B. van Dover,

Nature411,563(2001).

[6℄ Y.Bugoslavski,G.K.Perkins,X.Qi,L.F.Cohen, and

A.D.Caplin,Nature410,563(2001).

[7℄ Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M.

Polihetti, T.J. Tate, R. Gwilliam, A.D. Caplin,

Na-ture411,561(2001).

[8℄ S.L.Bud'ko,G.Lapertot,C.Petrovi, C.E.

Cunning-ham,N.Anderson,andP.C.Caneld,Phys.Rev.Lett.

86,1877(2001).

(7)

[10℄ G.Karapetrov,M.Iavarone,W.K.Kwok,G.W.

Crab-tree,andD.G.Hinks,Phys.Rev.Lett.86,4374(2001).

[11℄ J. Kortus, I. I. Mazin, K. D. Belashhenko, V. P.

Antropov,andL.L. Boyer,Phys.Rev.Lett.86,4656

(2001).

[12℄ J.MAnandW.E.Pikett,Phys.Rev.Lett.86,4366

(2001).

[13℄ N. I. Medvedeva, A. L. Ivanovskii,J. E. Medvedeva,

andA.J.Freeman,Phys.Rev.B64,20502,(2001).

[14℄ R.Osborn,E. A.Goremyhkin, A.I.Kolesnikov,and

D.G.Hinks,Phys.Rev.Lett.87,017005(2001).

[15℄ Y.Wang,T.Plakowski,andA.Junod,PhysiaC355,

179(2001).

[16℄ T.Yildirim,O.Gu;seren,J.W.Lynn,C.M.Brown,T.J.

Udovi,Q.Huang,N.Rogado,K.A.Regan,M.A.

Hay-ward,J.S. Slusky,T. He,M.K. Haas, P.Khalifah, K.

Inumaru,and R.J.Cava,Phys.Rev.Lett.87,037001

(2001).

[17℄ F.Bouquet,R.A.Fisher,N. E.Philips, D.G.Hinks,

and J. D. Jorgensen, Phys. Rev. Lett. 87, 047001

(2001).

[18℄ P.Seneor,C.-T.Chen,N.-C.Yeh,R.P.Vasquez,L.D.

Bell,C.U.Jung,Min-SeokPark,Heon-JungKim,W.N.

Kang, and Sung-Ik Lee, Phys. Rev. B 65, 012505

(2001).

[19℄ A.Y. Liu,I.I.Mazin, andJ. Kortus, Phys.Rev.Lett.

87,087005(2001).

[20℄ S.HaasandK.Maki,Phys.Rev.B65,020502(2001);

A. I. Posazhennikova et al., Europhysis Letters (in

print,2002).

[21℄ J.E.Hirsh,Phys.Lett.A282,392(2001).

[22℄ M. Tinkham, Introdution to Superondutivity

(MGraw-Hill,NewYork,1996).

[23℄ O.F.deLima,R.A.Ribeiro,M.A.Avila,C.A.Cardoso,

andA.A.Coelho,Phys.Rev.Lett.86,5974 (2001).

[24℄ K.Prassides,Y.Iwasa,T.Ito,Phys.Rev.B64,012509

(2001).

[25℄ J.D.Jorgensen, D.G.Hinks,andS.Short,Phys.Rev.

B63,224522(2001).

[26℄ M.H.Jung, M.Jaime, A.H. Laerda, G.S. Boebinger,

W.N. Kang, H.J. Kim, E.M. Choi, and Sung-IkLee,

Chem.Phys.Lett.343,447(2001).

[27℄ C.BuzeaandT.Yamashita,Superond.Si. Tehnol.

14,R115(2001).

[28℄ seee.g.: A. A.Nayeb-Hashemiand J.B. Clark (ed.),

Phase Diagrams of Binary Magnesium Alloys (ASM

International,MetalsPark,Ohio,1988).

[29℄ V.Russel,R.Hirst,F.A.Kanda,andA.J.King,Ata

Crystallogr.6,870(1953).

[30℄ M.E. Jones and R.E. Marsh, J. Am. Chem. So. 76,

1434(1954).

[31℄ MM. R.Naslaim,A. Guette, and M. Barret, J.Solid

StateChem.8,68(1973).

[32℄ S.Lee, H. Mori, T. Masui, Y. Eltsev, A. Yamamoto,

andS.Tajima,J.Phys.So.Jpn.70,2255(2001).

[33℄ M. Xu, H. Kitazawa, Y. Takano, J. Ye, K. Nishida,

H.Abe,A.Matsushita,N.Tsujii,andG.Kido,Appl.

[34℄ W.N. Kang,H.-Jin Kim,E.-Mi Choi,C.U.Jung, and

S.-IkLee,Siene292,1521(2001).

[35℄ H.Y.Zhai,H.M.Christen,L.Zhang,A.Paranthaman,

C.Cantoni,B.C.Sales, P.H.Fleming, D.K.Christen,

andD.H.Lowndes,J.Mater.Res.16,2759(2001).

[36℄ G.V. Raynor, The Physial Metallurgy of Magnesium

anditsAlloys(Pergamon,London,1959),p.441.

[37℄ Y.MoritomoandSh.Xu,ond-mat/0104568at

<http://xxx.lanl.gov>(2001).

[38℄ T.B.Massalski(editor),BinaryAlloyPhaseDiagrams

(ASMInternational,MetalsPark,OH,1990),2 nd

ed.

[39℄ D.R.Tilley,Pro.Phys.So.London86,289(1965).

[40℄ H.W.Weber(ed.),AnisotropyEetsin

Superondu-tors (PlenumPress,NewYork,1977).

[41℄ O.F.deLima,C.A.Cardoso,R.A.Ribeiro,M.A.Avila,

andA.A.Coelho,Phys.Rev.B64,144502(2001).

[42℄ D.K. Finnemore, J.E. Ostenson, S.L. Bud'ko, G.

Lapertot,andP.C.Caneld,Phys.Rev.Lett.86,2420

(2001).

[43℄ K.-H.Muller,G.Fuhs,A.Handstein,K.Nenkov,V.N.

Narozhnyi,and D.Ekert,J. Alloy Compd.322,L10

(2001).

[44℄ G. Blatter, M.V.Feigel'man, V.B. Geshkenbein, A.I.

Larkin,andV.M.Vinokur,Rev.Mod.Phys.66,1125

(1994).

[45℄ D.Saint-JamesandP.G.deGennes,PhysisLetters7,

306(1963).

[46℄ K.Yamafuji,E.Kusayanagi,andF.Irie,Physis

Let-ters21,11(1966).

[47℄ M.Tinkham,PhysisLetters9,217(1964).

[48℄ S.Patnaik,L.D.Cooley,A.Gurevih,A.A.Polyanskii,

J.Jing,X.Y.Cai,A.A.Squitieri,M.T.Naus,M.K.Lee,

J.H. Choi, L. Belensky, S.D.Bu, J. Letteri, X.Song,

D.G.Shlom,S.E.Babok,C.B.Eom,E.E.Hellstrom,

andD.C.Larbalestier,Superond.Si.Tehnol.14,315

(2001).

[49℄ A. Handstein, D. Hinz, G. Fuhs, K.H. Muller, K.

Nenkov,O.Guteish,V.N.Narozhnyi,andL.Shultz,

J.AlloyCompd.329,285(2001).

[50℄ M. Angst, R. Puzniak, A. Wisniewski, J. Jun, S.M.

Kazakov, J. Karpinski,J.Roos, and H.Keller, Phys.

Rev.Lett.88,167004 (2002).

[51℄ Yu.Eltsev,S.Lee,K.Nakao,N.Chikumoto,S.Tajima,

N. Koshizuka, and M. Murakami, Phys. Rev. B 65,

140501(2002).

[52℄ C.Ferdeghini,V.Braini, M.R. Cimberle, D.Marre,

P. Manfrinetti,V. Ferrando, M. Putti, andA.

Palen-zona,ond-mat/0203246at

<http://xxx.lanl.gov>(2002).

[53℄ V.G.Kogan,ond-mat/0204038at

<http://xxx.lanl.gov>(2002).

[54℄ S.Haas,privateommuniations(2001).

[55℄ S.V.Shulga, S.-L.Drehsler,H. Eshrig,H. Rosner,

andW.E.Pikett,ond-mat/0103154at

<http://xxx.lanl.gov>(2001).

[56℄ F.Manzano and A.Carrington, Phys.Rev.Lett. 88,

Imagem

Figure 1. Sanning Eletron Mirosopy (SEM) piture
Figure 2. X-ray diration pattern showing only the (001)
Figure 3. Upper ritial eld H2 vs. T emperature phase
Figure 5. Bulk nuleation eld (or upper ritial eld), H2,

Referências

Documentos relacionados

sample lets magneti ux to enter the sample, following. a

formation of single phase Pr123 with larger lattie pa-. rameter

provided lear evidene of a pair-breaking eld at the Ni site for non-superonduting ompounds.. This eld is not present in the superonduting ollinear AF DyNi2B2 C, however it

powder diratometry, sanning eletron mirosopy and d-magnetization.. Samples

Room temperature and 4.2 K M ossbauer spetra of the samples MgC(Ni1 xFex)3 with x = 0:01 and x = 0:5. Band struture alulations

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In

is proportional to the average grain-domain radius, but inverse proportional to the total length of.. grain-boundaries of the sample, a simple physial model has been provided and

transverse pinning of moving ommensurate vortex latties and smetis ours.. It is