• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
5
0
0

Texto

(1)

Magneti and Strutural Features of

RNi

2 B

2

C and RNiBC (R=Er, Ho, Dy, Tb, Gd)

Superonduting Compounds

E.M. Baggio-Saitovith,D. R. Sanhez, and H. Miklitz

Centro BrasileirodePesquisas Fsias,

RuaDr. XavierSigaud150,Ura, CEP22290-180Riode Janeiro, Brazil

Reeivedon28February,2002

TemperaturedependentMossbauerspetrosopyon 57

Fedoped(1at%ofNi)RNi2B2CandRNiBC

providedlearevideneofapair-breakingeldattheNisitefornon-superondutingompounds.

ThiseldisnotpresentinthesuperondutingollinearAFDyNi2B2C,howeveritappearswhen

thisompoundisdilutedwithnon-magnetiLu(Dy

1 x Lu

x Ni

2 B

2

C).Importantloalinformationon

thespinstrutureoftheRmagnetimomentsisobtainedforbothsystems.Theloalsymmetriesof

RNi

2 B

2

CandRNiBCompounds,measuredthroughtheE

Q

,werefoundtobelinearlyorrelated

with the 0

=a ratio ( 0

is the distane of the R-C layers between whih the Ni2-B2 layers are

sandwihed). AsalingofTwiththeloalsymmetry( 0

=a)was foundtobethesameforall the

RNi

2 B

2

CandRNiBC(exeptfor Y)ompounds.

I Introdution

The interplaybetweensuperondutivityand

magnet-iallyordered strutures, whih isthe main reasonfor

the great interest in the RNi

2 B

2

C ompounds,

essen-tially doesnot exist forthe RNiBCfamily [1-5℄,sine

with the exeption of LuNiBC [3℄ none of these

om-poundshasbeenfoundtobesuperonduting. Inorder

tounderstandwhythisisthease,despitethefatthat

the strutures of both lasses of ompounds are very

similar, exept for an additional R-C layer (next

se-tion), wehavestudiedin detailrystallographi

stru-ture, magneti ordering and transport properties of

RNiBC (R= Er, Ho, Dy, Tb, Gd) ompounds.

Es-peially 57

FeMossbauerEet(ME)spetrosopyon1

at % 57

Fe-dopedRNi

2 B

2

Cand RNiBChas beenused

to study theloalstruture attheFe(Ni)siteviathe

nulearquadrupolesplittingandthemagnetiorderof

the Rmagnetimomentsviathetransferred magneti

hyperneeld.

II Struture

ThesimilaritiesbetweentheRNi

2 B

2

CandtheRNiBC

strutureareillustratedin Figs. 1(a)and(b): whilein

RNi

2 B

2

C [(RC)

1 (NiB)

2

℄ there are alternatinglayers

of R-Cand Ni

2 -B

2

, anadditionalR-C layerexists

be-tweentheNi

2 -B

2

layersintheRNiBC[(RC)

2 (NiB)

2 ℄

series. Thus, in both lasses of ompounds the

Ni -B layers, whih are responsible for

superondu-tivity,are sandwihed betweentwoR-C layers. These

Ni

2 -B

2

layersarebuiltfromNiB

4

tetrahedrawitha

B-Ni-B bonding angle ' as indiated in gs. 1(a) and

(b). In RNiBC series the lattie parameters and d

[see g 1(a)℄turned out to be essentiallyindependent

ofRwith=7.55

Aandd=2.41

A[4,5℄.InRNi

2 B

2 C(see

Fig. 1(b)) (=a) =2( 0

=a), with 0

beingthe distane

oftheR-Clayersbetweenwhih theNi

2 -B

2

layersare

sandwihed and a being the lattie parameter in the

basal plane [6℄. In theRNiBC ompounds 0

is given

by 0

= d(Fig. 1(a)).

Figure1. Crystalstruturesofunitellof(a)RNiBC and

(b)RNi

2 B

2

Compounds. Therelevant lattie parameters

aand 0

(2)

ThejE

Q

jvaluesforRNiBC(R=Er, Ho,Dy,Tb,

Gd)andforRNi

2 B

2

C(R=Er,Ho,Dy,Tb,Gd,Nd,Pr)

[7,8℄areplottedinFig. 2asafuntionofthestrutural

parameter ( 0

=a) whih is a measure for the B-Ni-B

bondingangle'[see Figs. 1(a)and(b)℄.

1.35

1.40

1.45

1.50

1.55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Y

Pr

Nd

Gd

Tb

Dy

Ho

Er

Gd

Tb

Dy

Ho

Er

RNiBC

RNi

2

B

2

C

|

∆∆∆∆

E

Q

| (

mm/

s

)

c'/a

Figure 2. Room temperature quadrupole splitting jEQj

observed in RNiBC (R = Gd, Tb, Dy, Ho, and Er) and

RNi2B2C(R=Pr,Nd,Gd,Tb,Dy,Ho,Er)ompoundsas

afuntionofthe('/a)-ratio.

Fig. 2 shows that all ompounds, RNi

2 B

2 C as

well as RNiBC, have the same linear orrelation

be-tween ( 0

=a) and jE

Q

j. This learly indiates that

boththe rystallographi and the eletroni struture

(whih determine E

Q

) at the Fe(Ni) site in RNiBC

and RNi

2 B

2

C ompounds are very similar for equal

struturalparameter( 0

=a). Furthermore,sinejE

Q j

is a measure for the deviation from ideal tetrahedral

symmetry, we have to onlude from Fig. 2 that

the NiB

4

tetrahedra in RNiBC ompounds displays

stronger deviation from ideal tetrahedral symmetry

than theRNi

2 B

2

C ompounds. Consideringthe band

struture alulations by Mattheiss et al [9℄, whih

have shown that ideal tetrahedral symmetry of the

NiB

4

tetrahedrahappenstooinidewitharelativehigh

densityofstatesattheFermienergy,itbeomesevident

whythestrutureoftheRNiBCompoundsisless

fa-vorableforsuperondutivitythanthatoftheRNi

2 B

2 C

ompounds(see setionIV).

III Magnetism

HoNi

2 B

2

CordersantiferromagnetiallyatT

N

=8.5 K

andbeomessuperondutorat8K.An

inommensu-rate modulated magneti struture appears at 6 K,

whihseemstoberesponsibleforthereentrant

behav-ior, i.e., the suppressionof superondutivitybetween

4:7K < T < 6K (Fig. 3(a)).

Figure3. (a)

a

showing therangeof temperaturewhere

the reentrant behavior oursand (b)B

thf

at the Ni site

obtainedfortheH

0 (Ni

0:99 57

Fe

0:01 )

2 B

2

Compound.

Thelossof superondutivity inthis rangeof

tem-perature is attributed to the appearane of a

pair-breaking eld at theNi layer, where 57

Fe probe is

lo-ated. ThetransferredmagnetihyperneeldB

thf at

theNi( 57

Fe)site,resultingfromthefournearest

neigh-borofHoatoms(twofromtheHolayeraboveandtwo

fromtheHolayerbelowtheNiplane),willnotanelin

theinterval4:7K < T < 6K,duetothe

inommen-surate antiferromagneti struture of HoNi

2 B

2 C. The

B

thf

as a funtion of the temperature (Fig. 3(b)),

showslearlythat suhamagneti pairbreaking eld

indeedexistsin thereentrantregionfortheHoNi

2 B

2 C

ompound. Apair-breakingeld(transferredhyperne

eld)wasobservedattheNisiteandalsosuppresses

su-perondutivityinTbNi

2 B

2

C[10℄andGdNi

2 B

2 C[11℄.

Suhkindofpairbreakingeld isnotobservedin ase

of DyNi

2 B

2

Cand ErNi

2 B

2

C,where superondutivity

oexistswithmagnetiorder[12℄.

The superondutivity in the ollinear AF

super-ondutorDyNi

2 B

2

Creliesonthedeliateanelingof

the ordered magneti moments on the Ni site. As a

onsequene,noB

thf

wasobservedatanytemperature

in this ompound. On the other hand, the doping of

DyNi

2 B

2

Cwithothernon-magnetielements(e.g. Lu),

Dy

1 x Lu

x Ni

2 B

2

C,disturbthisbalaneandwouldyield

totheappearingofanetB

thf

attheNisite,suhthat

Lushould atlikeamagnetiimpurity. So,a

dereas-ing of T

with the Lu doping, in agreement with the

Abrikosov-Gor'kovtheory,wasobserved[13℄.

Further-more,theseelementsintroduedisorderinthe4f-spin

systemsuhthatsimultaneouslyT

N

alsodereaseswith

dopingonentration. LowtemperatureMossbauer

ex-periments on non-superonduting Dy

0:8 Lu

0:2 Ni

2 B

2 C

(3)

pairbreakingeld.Fig. 4showstheBt

hf

,asafuntion

ofthetemperatureforDy

0:8 Lu

0:2 Ni

2 B

2 C.

ThemagnetiorderingtemperaturesT

M

ofRNiBC

(R=Er, Ho, Dy, Tb, Gd) have been determined by

AC suseptibility measurements[5℄. We have plotted

these values forthe dierentompounds in Fig. 5

to-gether with those of the orresponding RNi

2 B

2 C and

RRh

4 B

4

ompoundsasafuntionofthedeGennes

fa-tor. Whilethe T

M

valuesoftheRNi

2 B

2

Compounds

nielyfollowalinearrelationwiththedeGennesfator

(see Fig. 5) this is not the ase for the RNiBC

om-poundswhere T

M

forDy andTbareevenhigherthan

that for Gd (see Fig.7). This nding is very similar

tothatfoundforferromagneti (FM)orderedRRh

4 B

4

ompoundswhereagainthehighestT

M

doesnotour

forGdbutforDy(Fig. 5). Crystaleldeetshave

ex-plained thisfatwhihenhane T

M

ofFM ompounds

in suh a waythat T

M

of TbRh

4 B

4

and DyRh

4 B

4 is

higher thanthat of GdRh

4 B

4

[14℄. As it isshown

be-low, DyNiBC and TbNiBC have a FM struture just

belowT

.

0

1

2

3

4

5

6

7

8

9

10

11

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

x=0.2

Dy

Dy

Dy

Dy

1-x

1-x

1-x

1-x

Lu

Lu

Lu

Lu

x

x

x

x

Ni

Ni

Ni

Ni

2

2

2

2

B

B

B

B

2

2

2

2

C

C

C

C

B

hf

(T)

Temperature(K)

Figure 4. B

thf

at the Ni site obtained for the

Dy

0:8 Lu

0:2 (Ni

57

0:99 Fe

0:01 )

2 B

2

Compound.

From the analysis of magnetoresistane data for

RNiBC (R=Er,Ho, Dy, Tb , Gd) [5℄oneobtainsFM

oupling for Er, Dy and Tb, orroboratedby reently

neutron diration data [15℄. 57

Fe ME studies below

T

M

forRNiBC(R=Er,Ho,Dy, Tb,Gd)showa

mag-netihyperneeldat theFe (Ni)nuleusforTband

Er,againinagreementwithneutronand

magnetoresis-tane data. No magnetihyperneeld,on the other

hand, wasobservedfor Ho,Dy and Gd. Whilethisis

in agreementwiththe otherexperimental data forHo

andGd, theabsenthfeld inDyNiBCisapuzzle.

Figure 5. Magneti transition temperatures TM for the

RNi2B2C [6℄, RNiBC [5℄ and RRh4B4 [14℄ ompounds as

afuntionofthedeGennesfator.

IV Superondutivity

The T

of the heavy magneti rare earth RNi

2 B

2 C

has been found to derease linearly with inreasing

deGennes fator(g

J -1)

2

J(J+1) [16℄. This orrelation

pointed the magneti pair-breaking as the dominant

eet in determine the depression of T

in magneti

RNi

2 B

2

Compounds but doesnotexplain the

behav-iorof nonmagneti Lu, Y and La. However, a

dier-ent approah, in whih the strutural eets seem to

playan important rolein determiningthe variationof

T

in therareearth-nikel-boroarbides(inludingthe

magnetiandnon-magnetiRNi

2 B

2

C,andtheir

oun-terpartsRNiBC),willbeshownbelow.

A deviation of the ideal tetrahedral symmetry of

theNiB

4

ofLuNi

2 B

2

Canbeobtainedexperimentally

doping the Lu site with the nonmagneti La. Being

theioniradiusoftheLadierentfromLuthedoping

willleadtoahangein the( 0

=a) parameter. Beause

thesesamplesarenonmagneti,thereisnomagneti

in-ueneon superondutivity and the depressionof T

will be determined only by strutural eets (hange

of ( 0

=a) parameter). The above arguments are also

validfor YNi

2 B

2

Cif doped withLa. In viewof these

fats wedeided toprepare theLu

1 x La

x Ni

2 B

2 C and

Y

1 x La

x Ni

2 B

2

Calloys.

Inorderto seeifthere isanyrelation betweenthis

strutural parameter and the superonduting

tran-sition temperature T

we have plotted in Fig. 6

the T

value for LuNiBC [3℄ together with those for

the non-magneti RNi

2 B

2

C (R=Lu, S) ompounds,

the non-magneti mixtures (Lu

1 x La

x )Ni

2 B

2 C [17℄,

(Y

1 x La

x )Ni

2 B

2

C [18℄ and the magnetially ordered

RNi

2 B

2

C(R=Tm,Er, Ho,Dy)ompounds. The

non-magneti LuNi

2 B

2

C, SNi

2 B

2 C, (Lu

1 x La

x )Ni

2 B

2 C

andLuNiBCshowalinearrelationbetween( 0

=a)and

T

(see solid line in Fig. 6). The non-magneti

(4)

between( 0

=a) andT

(seedashed linein Fig. 6)with

a slope whih is idential to that for the other

non-magnetiompounds. ThisslopeofT

vs(

0

=a),thusis

ameasureforthedereaseofT

withinreasing( 0

=a).

The T

values found for (Y

1 x La x )Ni 2 B 2 C are

higher (for the same ( 0

=a) value) than those of

RNi

2 B

2

Cfamilyofboroarbides. Asmentionedin

se-tionII,this feature islikelyrelated withthe fat that

the Y doesnot behave as a rare earth in these series

of ompounds, whih is also observed in the Chevrel

phases[19℄.

TheYNiBC beomessuperondutingwhen doped

with Cu [20℄, and their T

vs

0

=a plot follows quite

thesametrendobservedfortheY

1 x La x Ni 2 B 2 Cseries

(Fig. 9). Despitethefatthatinthisasethereours

ahange in the densityof states at the Fermi levelit

seemsthatagainastruturalhangeisrelevantforthe

hangeinT

whentheCusubstitutestheNiinYNiBC.

Quite surprisingly the magnetially ordered

RNi

2 B

2

C (R=Dy, Ho, Er) ompounds with T

N lose

to T

are on the same line asthe non-magneti

om-pounds. Only T

of TmNi

2 B

2

C with T

N

<< T

is

slightly below the line (see Fig. 6), indiating that

there is alear paramagneti pair-breaking eet due

to exhange satteringin theframework of

Abrikosov-Gorkov theory for this ompound. Thus, the pair

breakingeet oftheRmagnetimomentseemsto be

verysmall for Dy, Ho, Er and it is T

-2 K for

Tm. This nding is quitein ontrastto the generally

aepted opinion that T

in all magnetially ordered

RNi

2 B

2

CompoundssaleswiththedeGennesfator

[6,16℄. However, it is in perfet agreement with very

reent theoretial alulations [21℄ whih have shown

that the Ni(3d), eletrons whih are mainly

responsi-ble for superondutivity, do not feel the R magneti

momentsintheasethattheRmagnetimomentsare

antiferromagnetiallyordered,i.e. forDyandHo.

In the R

1 x R' x Ni 2 B 2

C pseudoquaternary alloys,

where one of them is magneti (e.g. R = Lu or Y

and R' = Gd [11,22℄), T

will derease aording to

Abrikosov-Gorkovtheory. Inthisase,thepair

break-ing eet ismoreeetive in redutionofT

thanthe

struturaleet(hangeof 0

=a)andannotbe

onsid-eredin ourlinearrelationofT

with( 0

=a).

Taking into aount what was disussed above,

the ( 0

=a) parameter (a measure of the distortion of

the NiB

4

tetrahedra) seems to be a relevant

param-eter, whih determines T

in all non-magneti and

antiferro-magnetially ordered RNi

2 B

2

C and RNiBC

ompounds. Ontheotherhand,theT

salewith( 0

=a)

ratioandthedeGennesfatorinasimilarwayforthe

heavyrareearthRNi

2 B

2

C.However,inthe

Abrikosov-Gorkovframeworkisnotpossibletoexplainthe

dier-enes in T

of thenonmagnetiLuNi

2 B 2 C, SNi 2 B 2 C, YNi 2 B 2 C, LaNi 2 B 2

C, and the R-C double layer

LuNiBC ompound.

1.42

1.44

1.46

1.48

1.50

1.52

1.54

0

2

4

6

8

10

12

14

16

18

x=0.6

x=0.3

x=0.0

LuNiBC

x=0.2

x=0.4

x=0.3

x=0.1

x=0.0

Sc

0.5=x

0.4=x

0.3=x

0.1=x

0.0=x

Lu

Tm

Er

Dy

Ho

T

c

(K)

c´/a

RNi

2

B

2

C

(Lu

1-x

La

x

)Ni

2

B

2

C

--- (Lu

1-x

Y

x

)Ni

2

B

2

C

(Y

1-x

La

x

)Ni

2

B

2

C

(Y

1-x

Gd

x

)Ni

2

B

2

C

YNi

1-x

Cu

x

BC

Figure 6. Superonduting transition temperatures of

RNi2B2C [6℄, (Lu1 xLax)Ni2B2C [17℄, (Y1 xLax)Ni2B2C

[18℄,LuNiBC[3℄,andYNi

1 x Cu

x

BC[20℄.

The superonduting properties of the RNi

2 B

2 C

phasesareattributedtoaneletron-phononmehanism

[9℄. Although the Fermi eletrons in these materials

have predominant Ni(3d) harater, the

superondu-tivity ours only when a speial s p band is

opti-mallyalignedrelativetotheFermilevel(i.e.,whenthe

NiB

4

tetrahedra angles are nearly \ideal")and whih

exhibitsstrongeletron-phononoupling[9℄.

Sineweexpetthatthestruturebyitselfannot

determine T

, morework is neessaryto eluidate the

role of the strutural eets on the eletron-phonon

oupling, whih seems to be essential to desribe the

nature ofthedepressionofT

in therare

earth-nikel-boroarbidesseriesofompounds.

V Conlusion

57

FeMossbauerspetrosopyon 57

FedopedRNi

2 B

2 C

showatransferredhyperneeldattheFe(Ni)nuleus

for theompounds wheresuperondutivityis not

ob-served (TbNi

2 B

2

Cand GdNi

2 B

2

C)and where the

su-perondutivitydisappearsinertainregionof

temper-ature (HoNi

2 B

2

C in the reentrant region)and doping

(Dy 0:8 Lu 0:2 Ni 2 B 2

C, below T

N

). This transferred

hy-perneeldisinterpretedasaeldoriginatingfromthe

magneti momentsoftheneighboringR atoms, whih

areinaspinongurationdierentthatommensurate

antiferromagneti,and atsasapair-breaking eld at

theNisite. 57

FeMossbauerresultsinRNiBCindiatea

ferromagnetispinstrutureforTbNiBCand ErNiBC

andantiferromagnetioneforHoNiBC.Eletrialeld

gradient measurements at Fe site show that the NiB

4

tetrahedra in RNiBCdisplaysstrongerdeviation from

\ideal"tetrahedralsymmetry(asthatLuNi

2 B 2 C)than theRNi 2 B 2

Compounds. Thesamelinearrelation

be-tweenT

and(

0

=a)wasfoundforthemagnetiaswell

(5)

indiating that strutural eets may be essential for

the establishment of the superonduting state in the

rare-earth-nikel-boroarbides.

Aknowledgements

Wethankthenanialsupportfrom FAPERJ/RJ,

VW Foundation, Capes/Brazil, CNPq/Brazil and

DAAD/GermanyD.R.S.thanksLatinAmerian

Cen-ter forPhysis(CLAF)forhisPost-dofellowship.

Permanent address: II. Physikalishes Institut,

UniversitatzuKoln,Zulpiherstr.77,50937Koln,

Ger-many

Referenes

[1℄ T.Siegrist, H.W.Zandbergen,R.J.Cava,J.J.

Kra-jewski,andW.F.Pek Jr.Nature(London)367,254

(1994).

[2℄ L. J. Chang, C. V. Tomy, D. MK Paul, N. H.

An-dersen,andM.Yethiraj,J.Phys.: Condens.Matter8,

2119 (1996).

[3℄ L.Gao,X.D.Qui,Y.R.L.Cao,Meng,Y.Y.Sun,Y.

Y. Xue,and C.W.Chu,Phys. Rev.B 50,9445-9448

(1994).

[4℄ Q. Huang, J. W. Lynn, A. Santoro, B. C.

Chak-oumakos,R.J.Cava,J.J.Krajewski,andW.F.Pek

Jr,PhysiaC271,311(1996).

[5℄ M. B. Fontes, J. C.Trohez, M. A. Continentino, B.

Giordanengo, S.L.Bud'ko,D.R.Sanhez,andE.M.

Baggio-Saitovith,Phys.Rev.B60,6781(1999).

[6℄ J.W.Lynn,S.Skanthakumar,Q.Huang,S.K.Sinha,

Z.Hossain,L.C.Gupta,R.Nagarajan,andC.Godart,

Phys.Rev.B55,6584(1997).

[7℄ Z.Zeng,D.R.Sanhez,DianaGuenzburger,D.E.

El-lis, E. M. Baggio-Saitovith, and H. Miklitz, Phys.

Rev.B55,3087 (1997).

[8℄ D. R. Sanhez, H. Miklitz, and E. M.

Baggio-Saitovith, J. Phys. : Condens. Matter 12, L177

(2000).

[9℄ L.F.Mattheiss,T.Siegrist,andR.J.Cava,SolidState

Commun:91,587(1994).

[10℄ D.R.Sanhez,S.L.Bud'ko,E.M.Baggio-Saitovith,

M. Hillberg, W. Wagener, H.-H. Klauss, G. H. Walf,

andF.J.Litterst.Phys.Rev.B,5710268(1998).

[11℄ D. R. Sanhez, H. Miklitz, and E. M.

Baggio-Saitovith,J.Phys.: Condens.Matter9,L299(1997).

[12℄ D.R.Sanhez,H.Miklitz,M.B.Fontes,S.L.Bud'ko,

andE.M.Baggio-Saitovith,Phys.Rev.Lett.76,507

(1996).

[13℄ B.K.Cho,P.C.Caneld,and D.C.Johnston,Phys.

Rev.Lett.77,163(1996).

[14℄ B.D.Dunlap,L.N.Hall,F.Behroozi,G.W.Crabtree,

andD.G.Niarhos,Phys.Rev.B29,6244(1984).

[15℄ F. Bourdarot, J. W. Lynn, E. Baggio-Saitovith, Q.

Huang, D. R. Sanhez, and S. Skanthakumar. Phys.

Rev.B64,104410(2001)

[16℄ P.C.Caneld,B.K.Cho,andK.W.Dennis,Physia

B215,337(1995).

[17℄ D.R.SanhezandE.M.Baggio-Saitovith,tobe

pub-lished.

[18℄ D. R. Sanhez, S. L. Bud'ko, and E. M.

Baggio-Saitovith,J.Phys.: Condens.Matter12,9941(2000)

[19℄ .Fisher,Appl. Phys.16,1(1978).

[20℄ A.K.Gangopadhyayand J.S.Silling, Phys.Rev.B

54,10107(1996)andCava,R.J.inthisproeeding.

[21℄ HyeonjinDoh,ManfredSigrist,B.K.Cho,andSung-Ik

Lee,Phys.Rev.Lett.83,5350(1999).

[22℄ M. El Massalami, S. L. Bud'ko, B. Giordanengo, M.

B.Fontes,J.C.Mondragon,E.M. Baggio-Saitovith,

Imagem

Figure 1. Crystal strutures of unit ell of (a) RNiBC and
Figure 2. Room temperature quadrupole splitting jEQj
Figure 5. Magneti transition temperatures TM for the
Figure 6. Superonduting transition temperatures of

Referências

Documentos relacionados

sample lets magneti ux to enter the sample, following. a

formation of single phase Pr123 with larger lattie pa-. rameter

powder diratometry, sanning eletron mirosopy and d-magnetization.. Samples

most of the reported results have been obtained using aligned rystallites, -axis oriented thin lms.. and

Room temperature and 4.2 K M ossbauer spetra of the samples MgC(Ni1 xFex)3 with x = 0:01 and x = 0:5. Band struture alulations

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In

is proportional to the average grain-domain radius, but inverse proportional to the total length of.. grain-boundaries of the sample, a simple physial model has been provided and

transverse pinning of moving ommensurate vortex latties and smetis ours.. It is