• Nenhum resultado encontrado

Braz. J. Phys. vol.30 número1

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.30 número1"

Copied!
8
0
0

Texto

(1)

On the Loalization of the Gravitational Energy

N. PintoNeto and P.I. Trajtenberg

CentroBrasileirode PesquisasFsias-CBPF

RuaXavierSigaud,150-ep22290-180-Riode Janeiro, RJ-Brazil,

E-mailnelsonpnlafexsu1.lafex.bpf.br

Reeived26August,1999

UsingaformalismintroduedbyFeynman,Deser, Grishhuk,Petrov andPopova,the

pseudoten-sors, suh as dened by Einstein, Tolman, Landau/Lifshitz and Mller, are expessed as gauge

dependenttensors inabakgroundspae,asthe gravitationalenergy-momentumtensorofDeser,

Grishhuk, Petrov and Popova. Using a resultobtained by Virbhadra for the energy density in

the Reissner-Nordstromspaetime,it is shownthat theation ofthesegauge transformations on

theabovetensorial expressionsisthesameasthe ationoftheoordinatetransformationsonthe

equivalentpseudotensorialexpressions,meaningthatthesetensorsanbesettozeroatapointby

asuitablehoieofgaugetransformation.

I Introdution

From the advent of General Relativity (GR) theory,

variousmethodshavebeenproposedtodeduethe

on-servation lawsthat haraterize the gravitational

sys-tems. In an initial phase, whih extended until the

middleofthe50's,predominatedintheliteraturetheso

alledpseudotensorialformalism[1℄. Inthisformalism,

theonservationlawsare expressed,asusual, through

theontinuityequations

T

;

=0; (1)

wheretheonservedquantityT

referstotheloalux

and densityof energyand momentum of gravitational

systems whih mayinlude, in general,boththe

mat-ter ontribution through itsenergy-momentum tensor

T

, and the gravitational eld ontribution, here

rep-resentedbythetermt

:

T

=

p

g(T

+t

): (2)

An essential property of this formalism is that,

ontraryto thematter ontribution, the gravitational

term isnotatensor andadmits nohomogeneouslaws

of transformation under oordinate transformations,

whih justies its designation, like T

itself, as the

energy-momentum pseudotensor.

Ineet,aordingtoagenerallyaepted

interpre-tation by the authors whih built this formalism, the

onservationlaws(1)representafundamentalphysial

proess,whosedynamialdesriptiondoesnotdepend

on the hoie of the oordinate system. However, the

invarianeoftheonservationlaws(1)impliesthatthe

transformation laws of T

must not be homogeneous

and this inhomogeneity is related to the gravitational

term,sinethematterontributionisatruetensor

den-sityterm.

On the other part, the presene of the

inhomoge-neousterm in the transformation law of T

makes it

possibletoannulthegravitationaltermloally,i.e., at

onegiven point. This property is onsistent with the

Equivalene Priniple aordingto whih the

gravita-tionaleld anbeloally eliminatedifweadopt a

o-ordinatesystem adapted to an observerin freefall at

apoint. Reiproally,inatspae-time,wherethereis

nogravitationaleld,thegravitationaltermwillnotbe

zerowhenexpressedin anarbitraryoordinatesystem

whih is not artesian. Hene, in the pseudotensorial

formalismit does not make sense to ask if the

gravi-tationalenergydensityiszeroornotat asinglepoint,

sinethisoneptdependsontheoordinatesystem. In

otherwords,thepseudotensorialformalismannot

at-tributeameaningtotheloalizationoftheenergyand

momentumofagravitationalsystemwhihisabsentof

ambiguities.

Furthermore,the onservation laws (1) do not

de-terminetheonservedquantityT

univoally. Ineet,

theonservationondition(1)allowsusto expressT

througha given anti-symmetri potentialfuntion, or

superpotential H [℄

, aording to the following

rela-tion:

T

=H

[℄

;

; (3)

However, if U

is a new funtion (not

neessar-ilyanti-symmetri),whihdiersfromH [℄

byaterm

, whose divergene or double divergene is

(2)

; 0or

;;

0 (4)

then,thequantity

denedthroughthisnew

super-potentialisalsoonserved:

=U

;

)

;

=0 (5)

Using this freedom on the hoie of the

superpoten-tial, authors like Einstein, Tolman, Landau, Lifshitz

and Mller arrived through dierent methods at the

followingsuperpotentials:

H [℄

=

1

2 ~ g

(~g

~ g

~ g

~ g

)

;

(Einstein) (6)

T

= H [℄

+

1

2 (Æ

~ g

Æ

~ g

)

;

(Tolman) (7)

L

= 1

2 [~g

~ g

~ g

~ g

;

(Landau=Lifshitz) (8)

M [℄

=

1

~ g

g

(g

; g

;

)(Mller) (9)

d

where ~g

= p

gg

is theinverse ofg~

andisthe

Einsteinonstant. Beause oftheinherentambiguities

ofthepseudotensorapproah,manyotherproposalsfor

thedenitionofthegravitationalenergy-momentum

lo-al density havebeenmade. Amongthem weanite

theKomardenition[2℄,theDeser,Grishhuk,Petrov

andPopova(DGPP)denition[3℄andtheBrown-York

denition 1

[4℄. TheKomardenition seemstobemore

adequatelyrelated to thenotionof gravitationalmass

thentothenotionofenergy(seeRef. [6℄)The

Brown-York denition is not in fat aloal but aquasi-loal

denition. TheDGPPdenitionsueedstobuilda

lo-al gravitationalenergy-momentumtensor by

desrib-ing gravitation as a spin two eld propagating in a

Rii-at xed spaetime, but it suers from a gauge

ambiguity.

In this paper we will examine in more detail the

gaugeambiguityoftheDGPPdenition. Wewillshow

thatthisambiguityisnothingbuttheoordinate

trans-formation ambiguity of the pseudotensors translated

to the DGPP language. In fat, the DGPP

energy-momentum tensor itself is a new energy-momentum

pseudotensorifwewriteitinthegeometriallanguage.

Reiproally,weanwriteallpseudotensorsastensors

intheDGPPapproah,allofthempossessingthesame

gaugeambiguity.

This paperisorganizedasfollows: Insetion Ithe

DGPPtheoryisbrieydisussedanditsexpressionfor

the energy-momentum tensor is dedued. In setion

II we show how the pseudotensors an be expressed

astensorelds, beinghowever,liketheDGPP

energy-momentum tensor, gauge dependent. In setion III,

using aresultobtainedbyVirbhadra, itisshownthat

the gauge dependene of the pseudotensors is

equiva-lenttothedependenewithrespettothehoieofthe

oordinate system in GR. We onlude in setion IV,

withsomeommentsanddisussions.

II The DGPP formalism

IntheDGPPformalismthegravitationaleldK

and

the gravitationalpotentialh

anbe treatedas

ten-sor elds dened in aertain Riemannian bakground

spaetime previouslyxed, haraterized bythe

bak-groundmetri

andbythebakgroundonnetions

C

sothat

p

gg

= p

(

+h

); (10)

and

=C

+K

: (11)

ThebakgroundspaemustbeRii-at,i.e.,R (o)

=0,

in orderforthetheorybeequivalenttoGR

Intermofthetensoreldsdenedon(10)and(11),

the Einstein/Hilbert ation for the gravitational eld

anbeexpressedas:

S= 1

2 Z

R p

gd 4

x= 1

2 Z

~

h

(K

; K

; )+(~

+ ~

h

)(KK)

; (12)

1

(3)

where

~

p

; ~

h

p

h

; (13)

K

K

; (14)

and

(KK)

K

K

K

K

: (15)

Thesemi-olon(;)representstheovariantderivativewithrespettothebakgroundonnetions. Wehaveomitted

in thelagrangian(12)theterms

L

0 =

p

R (o)

; L

1 =

~

h

R (o)

andL

2 =[~

K

~

K

;

; (16)

whihdonotontributetothevariationoftheation: L

0 andL

1

beauseofRii-atness,and L

2

beauseitisa

totaldivergene.

The dynamial equations for the gravitational eld an be obtained by varying the DGPP ation (12) with

respettotheelds ~

h

andK

resultingin thefollowingequationsfor ~

h

and K

:

G L

= (KK)

+

1

2

(KK)

+Q

;

; (17)

and

~

h

; +(~

+ ~

h

)K

(~

+ ~

h

)K

(~

+ ~

h

)K

=0; (18)

where

2G L

=[

h

+

h

Æ

h

Æ

h

;;

; (19)

and

2Q

=

h

K

+h

K

h

K

h

K

+

+ h

(K

K

)+h

(K

K

)+

+ h

(K

+K

):

(20)

Theenergy-momentumtensorofthegravitationaleld desribedbytheation(12)anbealulatedasusual,

byvaryingtheDGPPlagrangianwithrespettothebakgroundmetri,yielding

t

=

1

p

ÆL

Æ

= (KK)

+

1

2

(KK)

+Q

;

; (21)

d

whihisjust theright-hand-sidetermofequation(17)

for thegravitationaleld. Combiningthe above

equa-tions, it is possibleto write the energy-momentum of

thegravitationaleld as:

2t

=[

h

+

h

Æ

h

Æ

h

;; : (22)

Hene, in the DGPP presription, the gravitational

term anbe expressed as atensorwith respet to the

oordinatetransformationsonthebakgroundspae.

Thetheory anbeextended to inlude the matter

ontribution. IfL (m)

istheLagrangianassoiatedwith

thematter eldstheorrespondingenergy-momentum

tensorwill bedened,inanalogywith(21)as:

T

=

1

p

ÆL

(m)

Æ

: (23)

Admittingthehypothesisofminimalouplingbetween

the matter and the gravitational eld, the free eld

equation(17)anbegeneralizedtotheform:

G L

=(t

+T

): (24)

withG L

andt

dened by(19)and(21).

ThesymmetrypropertiesofG L

implyinthe

iden-tity

G L;

0; (25)

whih results, aording to (24), in the ovariant

energy-momentum onservation laws for the matter

plusthegravitationaleld:

T ;

=0)T

=t

+T

: (26)

Hene, in the DGPP formalism the invariane of the

onservationslawswithrespettooordinate

transfor-mationsisompatiblewiththetensornatureofthe

on-servedquantities,unlikethepseudotensorialformalism.

III The pseudotensors in the

DGPP formalism

Itwillbeshowninthissetionhowthepseudotensors,

denedoriginallyintermoftheEinstenmetrig

(4)

itsderivativesmaybefullyexpressedintermofthe

ele-mentarytensoreldsh

andK

denedintheDGPP

formalism.

Considerrst the original expressionsof the

pseu-dotensorsintermofthemetrig

:

E

=

1

2 [~g

(~g

~ g

~ g

~ g

)

; ℄

;

(Einstein=Tolman); (27)

L

= 1

2 [~g

~ g

~ g

~ g

;;

(Landau=Lifshitz); (28)

M

=

1

[~g

g

(g

; g

; )℄

;

(Mller): (29)

d

DenedaseldsontheDGPPbakgroundspaethe

pseudotensors,at eahpoint,anbewritten inaloal

inertialoordinatesysteminwhihtheonnetionsare

zeroatapointandwheretheovariantderivativesare

ordinaryderivatives. To express the pseudotensors in

an arbitrary oordinate system we an use the

bak-ground onnetion C

(see eq. (11)) to replae

ordi-naryderivativesbyovariantderivatives.

FortheLandau/Lifshitzpseudotensor oneobtains,

inanarbitraryoordinatesystem,theovariantform:

L

= 1

2 [~g

~ g

~ g

~ g

;;

(30)

Replaing in the aboveexpression the denition (10),

itresultsthat

L

=( )fT

+ 1

2 [h

h

h

h

;;

g; (31)

where

T

= 1

2 [

h

+

h

h

h

;; :

(32)

is theDGPPenergy-momentum tensorof matter plus

the gravitational eld (see equations (19), (24) and

(26)). Hene, in the DGPP formalism, the

Lan-dau/Lifshitz pseudotensor an be written in tensorial

formaswasalreadyreognizedin referene[3℄.

For the pseudotensors of Einstein/Tolman and

Mller,somediÆultiesanappearduetothepresene

ofthe ovariantmetridensity~g

,whihanonlybe

expressedin termoftheDGPPeld h

=

h

bymeansofaninniteseries

~ g

=

1

p

g g

=

1

p

f

h

+h

h

h

h

h

+::::g: (33)

d

SuhadiÆultyanbeoveromebyusingtherelation:

~ g

; =K

~ g

+K

~ g

K

~ g

: (34)

Then,weobtainfortheEinstein/Tolmanpseudotensor

theexpression:

E

=

p

2 [A

; K

A

+K

A

;

; (35)

whereA

isgivenby

A

(

+h

) Æ

(

+h

): (36)

The Einstein/Tolman pseudotensor beomes a tensor

densityofweight1intheDGPPformalism. Similarly,

fortheMllerpseudotensorweget

M

=

p

[K

A

;

; (37)

whihisalsoatensordensity.

Hene,allthepseudotensorsadmit apurely

tenso-rialrepresentationin theDGPPformalism. Wewould

liketo remark that theproedure of replaingthe

or-dinaryderivativebytheovariantoneyieldsnontrivial

results(nonnulltensors)onlyintheDGPPframework,

where the bakgroundonnetion C

, insteadof

is used,sothat in thisasethe ovariantderivativeof

g

is notzero.

IV Gauge dependene in the

DGPP formalism

If the gravitational energy-momentum pseudotensors

(5)

the DGPP energy-momentum tensor itself, where do

residetheambiguitiesinthedenition ofloalized

en-ergyinGRintheDGPPapproah? Wemustremember

thattheDGPPframeworkisjustanalternativeviewof

thesametheory,i.e.,GR.Theansweromesifwenote

that theoordinatetransformationinvarianeofGRis

translated to invariane under gauge transformations

onh

and K

intheDGPPformalism.

Ineet,onsidertheinnitesimaloordinate

trans-formation x 0

=x

+

(x), whih hanges the

fun-tional formofg~

as

~ g

0

(x)=g~

(x)+$ (1)

~ g

(x); (38)

wheretheLie derivative$ (1)

~ g

isgivenby

$ (1)

~ g

(x)= ~g

;

+g~

; +~g

; ~ g

; : (39)

Intheaseofanitetransformation,thehangeing~

isgivenby

~ g

0

(x)=g~

(x)+ 1

X

k =1 1

k! $

(k )

~ g

; (40)

where$ (k )

istheLiederivativeoforderk denedas

$ (k )

=$

(1)

[$

(k 1)

℄: (41)

Substitutingin (40)thedenition(10)weget

~ g

0

(x)=~

(x)+ ~

h

(x)+ 1

X

k =1 1

k! $

(k )

(~

+ ~

h

): (42)

d

Thetransformedmetridensityanbedeomposedin

twodistintways:

~ g

0

(x)=~

(x)+ ~

h 0

(x) (43)

and

~ g

0

(x)=~

(x)+ ~

h

(x); (44)

where, byomparisonwith(42)onegets

~

h 0

(x)= ~

h

(x)+ 1

X

k =1 1

k! $

(k )

(~

+ ~

h

); (45)

~

h

(x)= ~

h

(x)+ 1

X

k =1 1

k! $

(k )

~

h

; (46)

and

~

(x)=~

(x)+ 1

X

k =1 1

k! $

(k )

~

: (47)

On the form (43) the transformation ats only in

the eld ~

h

, letting invariantthe bakground metri

(x). Inthissense,oneaninterpretthe

transforma-tion(45)asapuregaugetransformation.

Analogouslythepure gaugetransformation forthe

eld K

(x)is

K 0

(x)=K

(x)+

1

X

k =1 1

k! $

(k )

(C

+K

); (48)

whilefortheasewhihorrespondtothe

transforma-tion(46)wehave

K

(x)=K

(x)+

1

X

k =1 1

k! $

(k )

K

: (49)

It is possible to show that the dynamial equations

forthe gravitationaleld (17) areinvariantunder the

transformations(45)and(48)supposingthatthe

bak-groundspaeisRii-at. [3℄

On the form (44), (46),(47) and (49)however, the

transformation is not a pure gauge transformation ,

sineitats ontheeld aswellason thebakground

metri. Infat,thesearetheusualtransformationson

tensorialeldsresultingfromageneralmappingofthe

manifoldonwhihtheyaredened. Hene,alltensors

in the manifold, in partiular the energy-momentum

tensorsdenedinthelastsetion,willtransforminthe

usualhomogeneousway:

T 0

(x)=T

(x)+ 1

X

k =1 1

k! $

(k )

T

(x) (50)

However, the situation is ompletely dierent for the

aseoftransformations (45)and(48). The tensorsdo

nottransform in the usual way (50)but ontains

ex-tra inhomogeneous terms whih brings the possibility

ofannullingthem. TheDGPPenergy-momentum

ten-sor,forexample,transformin thisaseaordingto:

T

(h

0

;K 0

)=T

(h;K)+ 1

^

G L

"

1

p

1

X

k =1 1

k! $

(k )

(~

+ ~

h

) #

(6)

where ^

G L

is the operator whih when ating on h

yields expression (19). Hene, it is always possible to

ndgaugetransformations(45)and(48)whihmakes

theenergy-momentumtensorsdenedpreviouslytobe

null. This is the analoguein the DGPP approah to

whathappenswiththepseudotensorsin GR.

To illustrate in more detail what happens in the

DGPP approah, we will investigate a spei

exam-ple, taking the DGPP and Landau/Lifshitz

energy-momentum tensors, and omparing their

transforma-tions under gauge and oordinate transformations in

theeldandgeometrialframeworks,respetively.

Ini-tially, let us express the Reissner-Nordstrom solution

in theasymptotiallyMinkowiskianoordinatesystem

(T;x;y;z)as:

ds 2

= dT 2

+dx 2

+dy 2

+dz 2

+(1 B)(dT +dr) 2

(52)

d

whereB=1 2m

r +

Q 2

r 2

andr 2

=x 2

+y 2

+z 2

>r 2

0 ,with

r

0

representingtheReissner-Nordstromeventhorizon.

Usingthisoordinatesystem,thepseudotensorsare

al-uledin Ref. [9℄givingtheresult

E 0

0 =L

00

=1=2M 0

0 =

Q 2

8r 4

; (53)

where theoriginalsexpressions (27),(28) and(29)for

the pseudotensors were used. Performing the

oordi-natetransformationonthetimevariable

T =t+ Z

(B 1

1)dr; (54)

the Reissner-Nordstrom solution an be expressed in

thenewoordinatesystem(t;x;y;z)intheform

ds 2

= Bdt 2

+dx 2

+dy 2

+dz 2

+(B 1

1)dr 2

: (55)

Inthis oordinatesystem thepresriptionsof

Ein-stein/TolmanandMllerfurnishthesameprevious

re-sults, while theLandau/Lifshitzpseudotensor isgiven

by

L 00

= Q

4

+Q 2

r(r+4m) 4m 2

r 2

8r 4

[Q 2

+r(r 2m)℄ 2

; (56)

revealing,onthisform,theambiguitiesthat

harater-ize the pseudotensorial formalism with regard to the

physialmeaningoftheenergydensityingravitational

systems.

We an write the two asymptotially at line

ele-mentused aboveinspherialoordinates(r;;). For

thelineelement(52)weobtain

ds 2

= dT 2

+dr 2

+r 2

(d 2

+sen 2

d 2

)+(1 B)(dT +dr) 2

; (57)

d

whereasfortheseondline element(55)is givenby

ds 2

= Bdt 2

+B 1

dr 2

+r 2

(d 2

+sen 2

d 2

): (58)

Oneobservesthat,asbefore,themetris(57)and(58)

arerelatedbytheoordinatetransformation(54).

Let us now alulate how the energy-momentum

tensors hanges in the DGPPformalism. The metri

ofthebakground,whihisatspaetime,isgivenby

ds 2

= dT 2

+dr 2

+r 2

(d 2

+sen 2

d 2

): (59)

From equations (10)and (57)weobtain thefollowing

non-nullomponentsofthegravitationaleld:

h 00

=h 11

= h 01

= h 10

=B 1: (60)

Considering now the transformed metri (58), and

maintaining the line element (59) for the bakground

metri,thenewnonullpotentialsh 0

(x)willbegiven

by:

h 000

=1 B 1

;h 011

=B 1: (61)

Itmustbestressedthatthesamebakgroundat

met-ri (59) was used to determine the new potential, in

agreement with the form (43) where the bakground

metri is not hanged. In this form, the oordinate

transformation(54)orrespond,intheDGPPlanguage,

toagaugehangeinh

(x)givenby(60)toh 0

(x)

de-ned in (61)where, byhypothesis, h

(x)andh 0

(x)

arerelatedbythetransformation(45).

Completing the alulations by Virbhadra, we

now determine the energy density of the

Reissner-Nordstromsolution in theDGPP presriptiondened

in (22)by

t 00

(;h)= 1

[ 00

h

+

h 00

2 0

h 0

(7)

Usingrstthepotential(60)andthebakground

met-ri(59)oneobtainforthispresription

t 00

(;h)= Q

2

8r 4

; (63)

in agreement with the results obtained by Virbhadra

using thepseudotensorial formalism. Forthe

gravita-tional eld(61)weget

t 00

(;h 0

)= Q

2

r 2

4m 2

r 2

+6mQ 2

r 3Q 4

8(r 2

2mr+Q 2

) 3

: (64)

Hene, just as the Landau/Lifshitz pseudotensor,

the DGPP energy-momentum tensor is strongly

af-feted by the transformation. Performing the same

alulations forthe Landau/Lifshitzenergy density in

DGPPform(seeeq. (31)),weget

L 00

(;h)=t 00

(;h)= Q

2

8r 4

(65)

forh

and

L 00

(;h)= Q

4

+Q 2

r(r+4m) 4m 2

r 2

8r 4

[Q 2

+r(r 2m)℄ 2

(66)

for h 0

. These expressions are idential to the

ex-pressions obtained by Virbhadra for the

Reissner-Nordstromenergy density in theLandau/Lifshitz

pre-sription,beforeandaftertheapliationofthe

oordi-natetransformation(54).

Thus,undertheationofthegaugetransformation

h

(x) ! h 0

(x), with h

(x) and h 0

(x) given by

( 60 ) and (61), the pseudotensor of Landau/Lifshitz

transforms itself exatly as if it have suered the

a-tionoftheoordinatetransformation(54)revealing,in

thatform,anequivalenebetweentheoordinate

trans-formations in the GR spaetime and this pure gauge

transformationdened ontheDGPPformalism.

Wewould liketoemphasizethatthehangein L 00

from equation (65)to equation (66)is not due to the

fatthatwearedealingwithaomponentofatensor.

Thishangeanbealulatedbyusingthe

transforma-tions(46)and(47)yielding

L 00

(

;h

)=t 00

(

;h

)= 2Q

4

+Q 2

r 2

4mQ 2

r

8r 2

(r 2

2mr+Q 2

) 2

; (67)

d

whihisdierentfrom equation(66).

V Conlusion

Inthislastsetionwesummarizetheonlusionsabout

thepseudotensorialandDGPPformalismsbasedonthe

resultswehaveobtainedintheprevioussetions.

First, from the relations obtained in setion II,

and from the denition (32) of the DGPP

energy-momentum tensor one onlude that, although

hav-ingexhibitedagravitationalenergy-momentumtensor,

whihisaneessaryonditiontoexpressaloal

quan-tityofenergyin aform independent oftheoordinate

system, the DGPP formalismdoes not solve, at last,

theproblem oftheloalizationofthegravitational

en-ergy beause the DGPP energy-momentum tensor is

notinvariantunderthepuregaugetransformation(45),

and it an be put to zero under a suitable hoie of

thiskindoftransformation. Infat,in theDGPP

for-malismboththepseudotensorsandtheDGPP

energy-momentumtensoranbedenedfromtensorial

super-potentials U

, whih are gauge dependent and dier

betweenthembyertainanti-symmetritensorialterm

sothat theonservationlawsarenotviolated.

Theexpressions below showthe tensorial

superpo-tentialsin thevariouspresriptionsaswellasthe

rela-tionsthat anbeestablishedbetweenthem:

U

= 1

2 [

h

+

h

h

h

;

(DGPP); (68)

L

= ( )U

+ 1

2 [

~

h

~

h

~

h

~

h

;

(Landau=Lifshitz); (69)

E

=

p

U

+

p

2 [K

A

K

A

(

h

h

)

;

℄(Einstein); (70)

M

= 2E

E

Æ

E

(8)

Hene,thefat that theDGPPenergy-momentum

is areal tensoris notimportant, sinethe

pseudoten-sors an also be written as tensors in this formalism.

Whatisruialisthedependeneofallthesequantities

under thepure gaugetransformations (45),(48). F

ur-thermore, aordingtothe resultsofsetion IV,these

gauge transformations are equivalent to the general

oordinate transformations dened on the GR

spae-time. Hene, one onlude that in spite of their

in-trinsioneptualsdierenes,thepseudotensorialand

DGPPformalismshaveanalogouspropertiesand

there-foreonstituteessentiallyequivalentformstorepresent

the onservation laws of gravitational systems. This

does not mean that the DGPP formalism is useless.

Note that the manifold mappinggroup (MMG)is, at

thesametime, theovariantgroupandthesymmetry

groupofGR[10℄. Inthis sense,theroleof theDGPP

formalism is to split these two distint aspets of the

MMGbydening abakgroundmetrioverwhihthe

eldspropagate. TheovarianeroleoftheMMG

man-ifestsitselfinthetensorialnatureofeldsandequations

ofmotionintheDGPPformalism,whihistrivialsine

anytheoryanbeset ovariant. Thesymmetryroleof

theMMG,whihisoneofthemostimportantfeatures

ofGR,appearsin theDGPPformalismasthe

symme-try of the equations of motion under the pure gauge

transformation (45). Oneshould also note that ifthe

eldh

doesnotalwaysappeartogetherwith

(and

alsoK

withC

)in theirself-ouplingandoupling

withmatter,thetheoryloosesitsgaugesymmetry,and

there is no sense in nullifying the energy-momentum

tensor bymeans of agaugetransformation: the

grav-itational energy turns out to be loalizable. This is

beausethebakgroundmetri

is nowobservable,

not onlyits ombination g~

=~

+ ~

h

, and hene

the symmetry group of the theory will no longer be

the MMG but the symmetry group of

(e.g., the

Poinaregroupifitistheatmetri). Thetheoryan

notbeformulatedingeometrialterms,apreferred

ref-ereneframe is present (the oneadapted to

), and

the Equivalene Priniple is not satised (there is at

leastonetypeofpartilewhihfollowsthegeodesisof

,notofg

astheothers). Thisisthe onlywayto

haveanotionofloalizablegravitationalenergyinsome

alternativetheoryofgravitywhihneessarilywill not

satisfythe CovarianePriniple (inthe sense that the

MMGisnomorethesymmetrygroupofthetheory[10℄)

andtheEquivalenePriniple.Foranexampleofa

the-oryonstrutedontheselinesseeRef.[11℄.

Hene,theDGPPformalism,althoughequivalentto

GR, notonlylarify someimportantaspets ofit but

alsohelps usto envisagealternativeroutesto desribe

thegravitationaleld.

Referenes

[1℄ J.L. Anderson, Priniples of Relativity physis,

hap.13,AademiPress(1967).

[2℄ A.Komar,Phys.Rev.113,934(1959).

[3℄ S.Deser,Self-InterationandGaugeInvariane,

Gen-eral Relativity and gravitation 1, 9 (1970), and

L.P.Grishhuk,A.N. Petrov andA.D.Popova,

Com-mun.Math.Phys.94,379(1984).

[4℄ J.D.BrownandJ.W.YorkJr.,Phys.Rev.D47,1407

(1993).

[5℄ J.W. Maluf, \Sparling Two-Forms, The Conformal

FatorandTheGravitationalEnergyDensityofThe

Teleparallel Equivalent ofGeneral Relativity", GRG

30,413(1998).

[6℄ N.Pinto-NetoandI.Dami~aoSoares,Phis.Rev.D52,

5665(1995).

[7℄ K.S.Virbhadra,Phis.Rev.D42,2919(1990).

[8℄ K.S.Virbhadra,Phis.Rev.D41,1086(1990).

[9℄ K.S.Virbhadra,Phis.LettersA157,195(1991).

[10℄ J.L.Anderson,PriniplesofRelativityPhysis,Chap.

4,AademiPress(1967).

[11℄ M.Novello,V.A.DeLoreniandL.R.deFreitas,Ann.

Referências

Documentos relacionados

In the particlewise case the existence of stationary product measures in the homogeneous phase implies that the critical density can be computed exactly, while for sitewise

The original idea of this model was to clarify whether, as in the TTP, PCP and other models without PC conservation, dynamic critical exponents will also depend on the initial

in one dimension from the point of view of phase transition and ritial behaviour..

The asymptotic time behavior of the density of particles is derived by mapping the reaction-diusion process into the problem of the reunion of k random walkers bounded to move in

While the models with the two equivalent ab- sorbing states or two equivalent groups of absorbing states belong to the DI universality class, the mod- els with a single absorbing

tions and a oarse-grained eld theory, we show that the late stages of this proess exhibit dynami.. saling, haraterized by a set of saling funtions

It was also been veried [13] from Monte Carlo simulations that the ma- jority vote model dened on a square lattice has the same critical behavior, with respect to the static criti-

Probability density of site i about the front from a simulation with an average of 2 particles/site (in the rest frame of the front)..