• Nenhum resultado encontrado

Rev. Bras. Ensino Fís. vol.23 número2

N/A
N/A
Protected

Academic year: 2018

Share "Rev. Bras. Ensino Fís. vol.23 número2"

Copied!
4
0
0

Texto

(1)

Two Theorems by Helmholtz

H.Fleming

Instituto deFsia,UniversidadedeS~aoPaulo

Reebidoem22/01/2001. Aeitoem21/02/2001

Why isitthat divandurlropup everywhereinthestudyofvetorelds? These theoremsby

Helmholtzexplain.

Por que os operadores div erotapareem emtodaparte, noestudo deampos vetoriais? Estes

teoremasdeHelmholtzexpliam.

I Introdution

WhatisusuallyalledHelmholtztheorem[1℄isthefat

that avetoreld ~

V whihvanishesatinnityis

om-pletely determined by giving, everywhere, div ~

V and

url ~

V. Helmholtzarrivedat itin hisstudyofvorties

in uids[4℄. Nowadaysit is mostly used in

Eletrody-namis, where the veryMaxwell equations express its

importanebybeingnothingelsethanthespeiation

of what the div and url of theeletri and magneti

elds are.

II The First Theorem

Atually,theHelmholtztheorem 1

provesaslightly

dif-ferent thing, from whih the statement above follows

immediately: a vetor eld ~

V whih vanishes at the

boundaries an be written as the sum of two terms,

one of whih is irrotational and the other, solenoidal

(thatis,divergeneless)[2℄. Considerthefollowing

well-knownidentityforanarbitraryvetoreld ~

Z(~r):

~

r 2

~

Z= ~

r( ~

r : ~

Z)+ ~

r ~

r ~

Z : (1)

Ifwenowtakeourvetoreld tobe

~

V = ~

r 2

~

Z (2)

thenitfollowsthat

~

V = ~

rU+ ~

r ~

W (3)

with

U = ~

r: ~

Z (4)

and

~

W = ~

r ~

Z : (5)

Equation(3) is Helmholtz's theorem, as ~

rU is

irrota-tionaland ~

r ~

W issolenoidal.

But,is itgeneral? It assumesthat ourvetoreld

anbewrittenastheLaplaianofsomeotherone. This

onstitutes,however,noproblemif ~

V vanishesat

inn-ityfastenough,for,then, theequation

~

r 2

~

Z = ~

V ; (6)

whihisPoisson'sequation, hasalwaysthesolution

~

Z(~r)= 1

4 Z

d 3

~

r 0

~

V( ~

r 0

)

j~r ~

r 0

j

: (7)

It is now a simplematter to prove,from Eq.(3),that

~

V isdeterminedfromitsdiv andurl. Taking,infat,

thedivergeneofEq.(3),wehave

div ~

V = ~

r 2

U ; (8)

whihis,again,Poisson'sequation,and,so,determines

U as

U(~r)= 1

4 Z

d 3

~

r 0

~

r 0

: ~

V( ~

r 0

)

j~r ~

r 0

j

: (9)

Takenowtheurlof Eq.(3). Wehave

~

r ~

V =

~

r ~

r ~

W

= ~

r( ~

r : ~

W) ~

r 2

~

W : (10)

Now, ~

r: ~

W = 0, as ~

W = ~

r ~

Z, so another Poisson

equationdetermines ~

W. UsingU and ~

W sodetermined

inEq.(3)provesourontention.

(2)

III Appliations

Westart witha verysimpleone. Considera

homoge-neous,ohmianondutor,andlettheurrentdensity ~

j

vanishatthelosedsurfaewhihenirlesit. Wewant

toinquireastothepossibilitythatastationaryurrent

mayexist inthisondutor. Wethenhave ~

r: ~

j=0,as

theurrentissupposed to bestationary, and ~

j = ~

E,

whihis Ohm's law. Also, ~

r

~

E =0,for astati ~

E.

Butthen,

~

r ~

j= ~

r ~

E=0 (11)

andsowehaveboth ~

r : ~

j =0and ~

r ~

j =0. Besides,

~

j vanishes at the boundaries. It follows, then, from

Helmholtz'stheorem,that ~

j=0. So,nostationary

ur-rentanrunundertheseonditions. Notiethatthisis

truealsoforatorusanditsontinuousdeformations,so

thatitappliestoanylosediruit,provingthe

nees-sitythattheondition ~

j = ~

E bebrokensomewherein

theiruit(wheretheeletromotiveforeisloated).

Considernow the eletromagneti potentials. The

Maxwellequation

~

r : ~

B=0 (12)

statesthat thereexistsavetoreld ~

Asuhthat

~

B= ~

r ~

A; (13)

this ~

A being alled the vetor potential. We may

as-sume that ~

Avanishes atinnity. Now, what weknow

about ~

Aisjustitsurl. Therefore,byHelmholtz's

the-orem,wearefreetohoosethevalueofitsdivergene.

Forinstane, wemaytake ~

r: ~

A=0,determining

om-pletely ~

A. Thisistheso-alledCoulombgauge.Butwe

analsoput ~

r: ~

A= 1

t

,beingthesalarpotential.

ThisistheLorentz gauge.

IV The Seond Theorem

Thereis anotherimportantresultbyHelmholtzinthe

samepaperwementionedabove. Itonernsthemost

general innitesimal deformationof a plasti (that is,

non-rigid)body. 2

Consider a small volume element of a deformable

body (a uid, say). Putting the origin of the

oordi-nates insidethis volumeelement, let~rbetheposition

ofageneripointP. TheoriginisdenotedbyO. After

a deformation, the material point P has a new

posi-tionvetor,~r+~s. Also thepoint ofthe body loated

at the origin moved, its position now being given by

~s

0

. Weassume, as physially reasonable, that~s is, as

afuntionof position,ontinuousanddierentiableto

any order. In what follows, in order to get results of

enoughgenerality, weassume P verylose to O, that

is to say, we onsider an innitesimal volume of the

body. Notie that ~s itself does have to be small in

whatfollows,though,inonsideringdeformations,this

is somewhat aademi, as nite deformations an

al-waysbeobtainedfrominnitesimalones(forinstane,

byLie groupmethods). This notwithstanding,the

ge-ometrial interpretation we will get is only lear for

innitesimal~s. Ontheotherhand,theappliationfor

theeletrield whih isdonebelowwould be

impov-erishedbyonning~stobeinnitesimal.

ATaylorexpansionfor~sgives

~s(~r)=~s

0 +(~r:

~

r )~s (14)

negleting further orretions, what is allowed by the

restrition to innitesimal volume. Here we wrote~s

0

for~s( ~

0). Inmoredetail, ifs

i

isthe i-thomponentof

~

s,one has

s

i

(~r)=(s

0 )

i +

X

l x

l (

s

i

x

l )

~r=0

: (15)

Thisanbeabbreviatedto

s

i =(s

0 )

i +x

l

l s

i

(16)

or,

s

i =(s

0 )

i +x

l T

li

: (17)

where,obviously,

T

li =(

l s

i )

~ r=0

: (18)

In order to analysethis deformationin termsof more

basiones,letusdeomposeT

li

inthefollowingway:

T

li =

1

2 (T

li +T

il )+

1

2 (T

li T

il

) (19)

and onsider separately the symmetri and the

anti-symmetriparts. Theantisymmetripartis

1

2 (

l s

i

i s

l )=

1

2

lik

(url~s)

k

: (20)

The symmetri part is S

li

1

2 (T

li +T

il

). It an be

deomposed asfollows:

S

li =

1

3 Æ

li S+(S

li 1

3 Æ

li

S) (21)

whereSTr(S

li )=S

ii

:Now,S

li =

1

2 (

l s

i +

i s

l ),so

that

S =

i s

i =

~

r :~s: (22)

WeanthereforewriteEq.(21)as

S

li =

1

3 Æ

li ~

r:~s+S 0

li

; (23)

where S 0

li

is a traeless symmetritensor. Going now

toEq.(17),weanwrite

s

i =(s

0 )

i +x

l 1

2

lik

(url~s)

k +

1

3 x

i

div~s+x

l S

0

li (24)

2

(3)

or,

~ s=~s

0 +

1

2

(url~s~r)+ 1

3 ~

rdiv~s+~r:S 0

(25)

wherethelasttermisavetorwhosei-thomponentis

x

l S

0

li

. AnobjetlikeS 0

issometimesalled adyadi.It

is aseond-ordertensor. Letus examinethe meaning

of the several terms of Eq.(25). Therst term of the

seond member is atranslation. Theseond is an

in-nitesimalrotationaroundtheaxis(url~s)

~r=0

,andthe

remainingtermsdesribeadilatationofthevolume

ele-ment. Tounderstandthembetter,letussuppose

tem-porarily that the translation and the rotation vanish,

sothatwehave,foraomponentof~s:

s

i =

1

3 div~sx

i +x l S 0 li : (26) Now,S 0 li

isasymmetrimatrix,soit anbe

diagonal-ized. Thismeansthatweanhangeoordinateaxesin

suhawaythat,in thenewones,thematrixelements

of S 0

havetheform S 0 li =Æ li S 0 ii

, whereno sumis

im-pliedinthislastexpression. So,ifthenewoordinates

aredenoted byX

i

,wehave

X l x l S 0 li = X l X l ÆliS 0 ii =X i S 0 ii

nosumoni; (27)

sothat s i = 1 3 div~sX

i +S 0 ii X i

(nosum): (28)

Consider theinnitesimal \ube" entered at O, with

P as a vertex. (The \ube" may have urvilinear

edges, at least after the deformation). Its volume

before the deformation was, in the new oordinates,

V = X

1 X

2 X

3

. After the deformation, it is V 0 = (X 1 +s 1 )(X 2 +s 2 )(X 3 +s 3

). As we have,

onsider-ingonlythedilatation,

s

i =

1

3 div~sX

i +S 0 ii X i =X i ( 1 3

div~s+S 0 ii ) (29) then X i +s i =X i (1+ 1 3

div~s+S 0

ii )X

i (1+

i

) (30)

and, forthevolume,

V 0 =X 1 X 2 X 3 (1+ 1 )(1+ 2 )(1+ 3 ) (31)

whih,to rstorder is

V 0

=V(1+

1 + 2 + 3 ) (32) that is, V 0

=V(1+div~s+S 0 11 +S 0 22 +S 0 33

): (33)

But,asS 0

ij

is traeless,

V 0

=V(1+div~s): (34)

So,theS 0

ij

donotontributeto thehangeofvolume,

butdo ontributetothehangeofthe formofthe

lit-tle ube. Referring again to Eq.(25), we see that ~s

is written as a sum of a translation, plus a rotation,

plusan isotropi dilatation, plus a volume-onserving

deformation. 3

Notiethat Eq.(25)wasobtainedusingonly

Calu-lus. So,itshould applyto anyvetoreldwhatsoever.

Toshed morelightontherole ofeahterm ofthe

ex-pansion, let us use it for the eletri eld. We then

have:

~

E(~r)= ~ E( ~ 0)+ ~r 3 (div ~ E) 0 + 1 2 [(url ~ E) 0

~r℄+~r:S 0 : (35) As(div ~ E) 0 =4( ~

0),theseondtermreads

~r 3 (div ~ E) 0 = ~r 3 4( ~ 0)= 4 3 r 3 ( ~ 0) ~ r r 3 : (36)

Now,this is theeld ofauniformly harged sphereof

radiusrat apointofitssurfae. It isaradialeld to

beaddedto ~

E

0 .

The seond term vanishes if the elds are stati.

Otherwise, (url ~ E) 0 = 1 ( ~ B t ) 0 (37) and 1 2 [(url ~ E) 0 ~r℄=

1 2 t [ ~ B( ~

0)~r℄: (38)

Consider a uniform magneti eld of value ~

B( ~

0). A

vetorpotentialorrespondingtoitis

~

A(~r)= 1

2 ~

B( ~

0)~r (39)

sothatwehave

1 2 [(url ~ E) 0 ~r℄=

1 ~ A t : (40)

Thismeans that thethird term of Eq.(35)is the

on-tributionofthemagnetield attheorigin,treatedas

follows: extendthevalueof ~

B at ~

0to auniformeld.

Compute its vetor potential and then add the term

1 ~ A t to ~ E( ~

0). All therestof theeld at~r(andthat

ouldbealot!) omesfrom thetermS 0

.

3

Thisis,infat,thedeomposition,followingWeyl[3℄,ofthetensorT

li

intoitsirreduibleomponentsunderrotations. This

(4)

V Conlusion

TherstHelmholtztheoremexplainswhythediv and

urlaresoubiquitousin vetorelds. Italsoexplains

thestruture of Maxwellequations, usually written in

suhawaythattherstmemberofeahiseitheradiv

or aurl. The seond explains the meanings, and so

also the names, of those operators. Considering that

HermannvonHelmholtzgraduatedinMediine,notin

Physis,thatwas notabadjobatall!

I wishtothankWalterF.Wreszinskifor

enlighten-ingomments.

Referenes

[1℄ W.K.H.PanofskyandM.Phillips,ClassialEletriity

andMagnetism,NewYork,1970.

[2℄ D.H.Kobe,Am.J.Phys.54,552(1985).

[3℄ H.Weyl,TheClassialGroups,Prineton.

[4℄ H.v. Helmholtz, 

Uber Integrale der

hydrodynamis-hen Gleihungen, welhe den Wirbelbewegungen

entsprehen,Crelles J.55,25(1858).

[5℄ A.Sommerfeld,Mehanis of Deformable BodiesNew

York(1959).

[6℄ R. Aldrovandi, J.G. Pereira, An Introdution to

Referências

Documentos relacionados

Profa Maria Am elia de Souza Reis para a elabora ~ ao de. um urso de p os gradua ~ ao lato sensu em Ci^

ados, mais relaionados om ensino de f sia, desen-.. volvimento de materiais did atios, aplia ~ ao

Esta tem sido minha maior preoupa ~ ao neste

nal da vida de Newton, desde o m da disputa pela. prioridade, em 1723, at e a sua morte

imagens, omputa ~ ao simb olia, simula ~ ao de aidente de tr^ ansito entre v arios outros t opios s~ ao. apresentados

hilo inextensible, masa puntual del uerpo, masa despreiable del hilo.. Se onluye que

Organizac¸˜ao, em conjunto com os institutos e departa- mentos de f´ısica de todo o pa´ıs, de ida de f´ısicos `a escolas de ensino m´edio para palestras, debates, experimentos e

La segunda variante de razonamiento en la categor´ıa C (m´as numerosa que la anterior) agrupa aquellas respuestas que explican que como el flujo es nulo, la carga encerrada ser´a cero