• Nenhum resultado encontrado

Rev. bras. farmacogn. vol.27 número5

N/A
N/A
Protected

Academic year: 2018

Share "Rev. bras. farmacogn. vol.27 número5"

Copied!
10
0
0

Texto

(1)

w ww . e l s e v i e r . c o m / l o c a t e / b j p

Review

Vouacapane

diterpenoids

isolated

from

Pterodon

and

their

biological

activities

Leandra

A.R.

Oliveira

a,b

,

Gerlon

A.R.

Oliveira

c

,

Leonardo

L.

Borges

d,e

,

Maria

Teresa

F.

Bara

b,∗

,

Dâmaris

Silveira

a

aFaculdadedeCiênciasdaSaúde,UniversidadedeBrasília,CampusDarcyRibeiro,Brasília,DF,Brazil bFaculdadedeFarmácia,UniversidadeFederaldeGoiás,Goiânia,GO,Brazil

cInstitutodeQuímica,UniversidadeFederaldeGoiás,CampusSamambaia,Goiânia,GO,Brazil

dEscoladeCiênciasMédicas,FarmacêuticaseBiomédicas,PontifíciaUniversidadeCatólicadeGoiás,Goiânia,GO,Brazil eCampusAnápolisdeCiênciasExataseTecnológicasHenriqueSantillo,UniversidadeEstadualdeGoiás,Anápolis,GO,Brazil

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7April2017 Accepted30May2017 Availableonline30August2017

Keywords: Biologicalactivity Phytochemistry Sucupira

Vouacapanediterpenoids

a

b

s

t

r

a

c

t

ThePterodongenuscomprisestwonativespeciesinBrazil,knownas“sucupira-branca”or“faveira”. TheirfruitshavelongbeenusedinBraziliannaturalmedicine,mainlyforthetreatmentofinfections andinflammations.Thepharmacologicalpropertiesofthesefruitshaveoftenbeenlinkedwith vouaca-panediterpenoids.Thisreviewevaluatedthescientificresearchintheperiodfrom1973toFebruary 2017,aimingtoanswerhowdifficult itstill istodevelopascientificallysupportedproductbased onPterodonvouacapanes.Therefore,thispaperreviewspurification,identification,andquantification methodsappliedtovouacapanediterpenoidsfromPterodon,aswellastheperformanceofthese phyto-chemicalsinpharmacologicaltestsdescribedintheliterature.Dataanalysisresultssupportconventional notionsthatsuggestvouacapanediterpenoidsfromPterodonhaveanti-inflammatoryproperties. How-ever,thestudiescarriedoutsofarstillrepresentpartialassessmentofthevouacapaneactivitiesand furtherstudiesneedtobecompleted.Pterodonditerpenoidshavealsobeenassociatedwithlarvicidal, leishmanicidal,cardiovascular,andantitumoractivities,whichreinforcesthegenus’potentialasasource ofphytomedicines.Someremaininggapsaboutthereviewedactivitieswerementioned,whiletrends andperspectivesforfutureresearchwereproposed.

©2017SociedadeBrasileiradeFarmacognosia.PublishedbyElsevierEditoraLtda.Thisisanopen accessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Theuseofmedicinalplantshasbeencommonsince ancient

times;theearliestreferencescanbefoundinEgyptianpapyruses,

Chinese scriptures, and Sumerian clay tablets (Hamburger and

Hostettmann,1991).Amongthemedicinalplantsused inmany countries,theFabaceaefamilypresentsthesecondlargestgroup ofspecies,withapproximately490membersdescribedinthe lit-erature(Gaoetal.,2010).ThisfamilyincludesthePterodongenus, whichcomprisesimportantmedicinalplants,particularlyinSouth America.

AccordingtothewebsiteThePlantList(2013),Pterodonhastwo nativeBrazilianspecies,knownas“sucupira-branca”or“faveira”: Pterodonabruptus(Moric.)Benth.(synonym:Commilobium

abrup-tum Moric.) and P. emarginatus Vogel [synonyms: Acosmium

∗ Correspondingauthor. E-mail:mbara@ufg.br(M.T.Bara).

inornatum (Mohlenbr.) Yakovlev; C. polygalaeflorus Benth.; C. pubescensBenth.;P.apparicioiPedersoli.;P.polygalaeflorus(Benth.) Benth.; P. polygaliflorus (Benth.) Benth.; P. pubescens (Benth.) Benth.;andSweetiainornataMohlenbr.].

Ethnobotanicalandethnopharmacologystudiesareapproaches

tofindactivecompoundstodealwithhealthproblems.Many

rele-vantmedicineswereoriginatedfromanaturalcompoundisolated

frommedicinalplants(Raietal.,2011).Anethnobotanicalstudy

conducted in southeasternBrazil indicated that hydroalcoholic

macerateofPterodonfruitshavebeenusedinpopularmedicine

asanti-inflammatory,mainlyinthetreatmentofrheumatism,sore throat,bronchitisandasthma(Grandietal.,1989).Othersurveys also attribute such properties to Pterodon fruits (Corrêa,1975; Hansenetal.,2010;Raposoetal.,2011;Faggetal.,2015).

ResearchonPterodonfruitoilandextracthasconfirmedseveral biologicalactivities,e.g.anti-inflammatory(Carvalhoetal.,1999; Hoscheidetal.,2013;Pascoaetal.,2015),antinociceptive(Silva etal.,2004;Coelhoetal.,2005;Oliveira,2012;Nuccietal.,2012; Martinsetal.,2015),effectonarthritistreatment(Sabinoetal.,

https://doi.org/10.1016/j.bjp.2017.05.014

(2)

Pereiraetal.,2011;Pereiraetal.,2012),antioxidant(Dutraetal., 2008),antimicrobial(Dutraetal.,2009;Toledoetal.,2011), larvi-cidalagainstAedesaegypti(Pimentaetal.,2006),andantiparasitic againstTrypanosoma cruzi(Barreto etal., 2008;Oliveira, 2014), Leishmaniaamazonensis(Dutraetal.,2009;Oliveiraetal.,2017) andL.braziliensis(Oliveiraetal.,2017).

Amongthecompoundsprobablyrelatedtothebiological

prop-ertiesofPterodonarevouacapanediterpenes(Euzébioetal.,2009; Spindolaet al.,2010; Galceran et al.,2011; Nucciet al., 2012). VouacapanescanbefoundinothergeneraofthefamilyFabaceae, beyondPterodon.Thesediterpenoidsarealsodistributedinthe fol-lowingspecies:Bowdichianitida(Matsunoetal.,2008),Caesalpinia bonduc(L.)Roxb(Balmainetal.,1967;Pudhometal.,2007),C.crista L.(Jadhavetal.,2003;Cheenprachaetal.,2006;Dasetal.,2010), C.echinataL. (Cotaetal.,2011;Mitsuiet al.,2015), C.minaxH. (Jiangetal.,2001;Jiangetal.,2002;Dongetal.,2015;Lianetal., 2015;Zhangetal.,2015),C.platylobaS.W.(Hurtadoetal.,2013), C.pulcherrima(L.)Sw.(Mcphersonetal.,1986;Ragasaetal.,2002; Ragasaetal.,2003;Dasetal.,2010),C.volkenssiH.(Ochiengetal., 2012),Dypteryxodorata(A)W.(Godoyetal.,1989),D.lacunifera D.(MendesandSilveira,1994),StuhlmaniamoaviV.(Odaloetal., 2009)andVouacapouaamericanaA.(Kidoetal.,2003).

Mauryaet al. (2012)reviewed the studiesinvolving natural

occurrenceofcassaneandnorcassanediterpenesuptoSeptember

2011.ThisreviewfocusedonCaesalpiniagenus,fromwhichonly12 outofits322citedstructureswerealsoreportedtoPterodongenus.

Recently, Bao et al. (2016) have reviewed thenaturally

occur-ringfuranoditerpenoids,andreportedonlysixcompoundsfrom

Pterodon. Therefore, this review summarizesthe available data

aboutvouacapanediterpenoidsisolatedfromPterodonaimingto

provideanoverviewoftheirstructuraldiversity,proceduresused intheirextraction,isolation,structuralelucidation,and quantifica-tion,aswellasthebiologicalactivitiesreportedforthesenatural

products.Theassessmentspannedtheperiodfrom1973to

Febru-ary2017.Thus,thepresentpaperaimstoencouragefutureresearch aboutthisgenusandtheirchemicalcompounds,indicatingtrends andtryingtoanswerhowdifficultitstillistodevelopascientifically

supportedproductbasedonPterodonvouacapanes.

Vouacapanebiosynthesis

Diterpenoids constitute a vast class of isoprenoid

com-pounds,biosynthesizedfrommevalonicacidthrough2E,6E,10E

-geranylgeranylpyrophosphate(GGPP)and deoxyxylulose

phos-phate(Dewick,2002).Diterpenes’ molecularstructure contains

skeletons with twenty carbon atoms and may reveal acyclic:

phytane(1),bicyclic:labdane(2)andclerodane(3),tricyclic: abi-etane(4),pimarane(5)andcassane(6),tetracyclic:gibberellane(7),

andtaxane(11)forms(Hanson,1995;Garcíaetal.,2007;Ramawat andMérillon,2013).

Thebasiccassaneskeleton(6)maybederivedfrompimarane (14) through methylmigration from C-13 toC-14 (14’)in the

biosyntheticpathway.Pimaranesareformedthroughthe

cycliza-tionofthelabdanepyrophosphate(12)(Xuetal.,2011;Maurya etal.,2012).Labdane-typediterpenebiosynthesisconsistsofan initialcyclization of GGPPpromoted by a class II diTPS

(diter-pene synthase) to produce a cyclic diphosphate intermediate,

followed by conversionof this intermediate (13)into the final diterpeneskeletonbyaclassIdiTPS(Peters,2010).Cassanes

con-taining a furan ring are called furanocassanes or vouacapanes

(Scheme1).

Vouacapanes represent an important group of tetracyclic

cassanesand theirstructure ischaracterizedbyaskeleton

con-structed from the fusion of three cyclohexane rings and one

furan ring (Jiang et al., 2001). Vouacapanes previously identi-fied in Pterodon species are summarized in Table 1, according

to structure 15, in addition to the lactones 37 (Mahajan and

Monteiro, 1973) and 38 (Demuner et al., 1996; Omena et al., 2006).

Extraction,quantificationandstructuralelucidationof vouacapanes

Extraction

Vouacapanes are low to medium polarity compounds, thus

beingmainlysolubleinhydrophobicsolvents.Vouacapane

diter-penesarecommonlyisolatedfromthefruitsofdifferentPterodon speciesthroughsimilarprocedures.Fruitsaregroundandextracted

bytheSoxhletmethodusingvarioussolvents,suchaspetroleum

(3)

Scheme1. Biosyntheticpathwayofthebasiccassaneskeleton(6).

2008).Otherextractionproceduresincludepercolationusing hex-ane(Fascioetal.,1976)andethanol90%(Omenaetal.,2006),heat extractionusingethanol(Camposetal.,1994),andcoldextraction usingdichloromethane(Spindolaetal.,2009,2010).

FollowingtheSoxhletextraction,thesolventmayberemoved

and the extract submitted to column chromatography to yield

vouacapanes(Mahajan andMonteiro, 1973; Fascioet al.,1976;

Demuneretal.,1996;Rubingeretal.,2004;Pimentaetal.,2006; Spindolaetal.,2009,2010;Servatetal.,2012).Moreover, fraction-ationbyliquid–liquidextraction(Omenaetal.,2006;Vieiraetal., 2008)oracid–baseextraction(MahajanandMonteiro,1973; Fas-cioetal.,1976;Camposetal.,1994;Arriagaetal.,2000)mayalso

beperformedbeforepurificationbycolumnchromatography.The

6␣,7␤-diacetoxyvouacapane(18)wasobtainedbydirect crystal-lizationfollowingextraction(MahajanandMonteiro,1973;Fascio etal.,1976).

Chromatographic purification of these compounds is

usu-ally performed using silica gel as a stationary phase (Fascio

etal.,1976;Rubingeretal.,2004;Vieiraetal.,2008).However, Mahajan and Monteiro (1973) used alumina to purify 6␣,7␤

-diacetoxyvouacap14(17)-ene (16) and 18, while Vieira et al.

(2008)usedflorisilcolumn inoneofthestages of vouacapane-6␣,7␤,14␤,19-tetraol(29)purification.

Open column chromatography is often a challenging and

time-consumingtechniquebecausefractionshavetobeanalyzed

following fractionation, not during it. Furthermore, thevarious

stages of this process may favor the occurrence of chemical

reactionsinvolvingsecondarymetabolites,henceleadingtothe for-mationofartifacts(Pizzolattietal.,2002).Toavoidthesesetbacks, Oliveiraetal.(2017)proposedasemipreparativehigh-performance liquidchromatography(HPLC)methodforisolatingP.emarginatus diterpenoids.

Classicchromatographicelutionsarecommonlymonitoredby

thin layerchromatography,which usesdefault wavelengthsfor

choosingthefractionscontainingpurecompounds.However,as

wehavenoticed(Oliveiraetal.,2017),somewavelengthsmaynot

allowtodiscriminatedifferentvouacapanesinasample.TheUV

diodearrayHPLCdetectorsenableassessingthechromatogramin

awidewavelengthrange,enhancingtheassurancesinthe

eval-uation of purity of the peaks. The assessment of the peaks in

theiroptimalabsorbancewavelength,instead ofdefault values,

alsodecreasesdetectionlimits,favoring theisolation of minor-itycompounds.Inaddition,theseparationpowerofhigh-pressure

columnsissuperiortotheonesachievedthroughopencolumns.

SincejustveryrecentlyHPLCisolationhasbeenappliedtoPterodon fruits(Oliveiraetal.,2017),itislikelythatmanyvouacapaneswere notyetdescribedforthisgenus.

Structuralelucidation

Followingextractionandisolation,thenextstepconsistsin elu-cidatingthestructureofvouacapanes.Thestructureofvouacapane diterpeneshasmainlybeendeterminedvianuclearmagnetic reso-nance(NMR)(Camposetal.,1994;Vieiraetal.,2008;Euzébioetal., 2009;Galceranetal.,2011).Vouacapanesmaybecharacterizedby theirfuranringsignals.The1HNMRspectraforvouacapanesshow hydrogenfuransatapproximately␦H6.4ppm(1H,d,J=1.9Hz,H15) and␦H7.2ppm(1H,d,J=1.9Hz,H16),whilethe13CNMRspectra showfuranringsignalsat␦C148.2ppm(C-12),141.9ppm(C-16), 123.9ppm(C-13),and107.2ppm(C-15)(Spindolaetal.,2009; Hur-tadoetal.,2013;Oliveiraetal.,2017).

Moreover,NMRanalysiscanbeusedtogetherwithother

spec-troscopictechniques,suchasinfrared(IR)(Spindolaetal.,2010) andmassspectrometry(MS)(Fascioetal.,1976;Arriagaetal.,2000; Servatetal.,2012;Oliveiraetal.,2017),ontheirownorcombined (Demuneretal.,1996;Omenaetal.,2006;Spindolaetal.,2009).

Ontheotherhand,infraredspectroscopyprovideslimited infor-mation for structural elucidation. However, it is very useful in

verifyingtheidentityofcompoundsbycomparingspectrafrom

newsampleswiththosefromreferencedsubstances.Omenaetal.

(2006)andSpindolaetal.(2009,2010)haveusedIRspectroscopy toobtainstructuralinformationaboutisolatedvouacapanes,e.g. evidencefor hydroxyl(absorption closeto3450cm−1)and car-bonyl functionalities (absorption closeto1710cm−1).Demuner

etal.(1996)haveobservedthatvouacapanes’IRspectrumshows

hydroxyl absorptionbands at3560(sharp,due tofreeOH)and

3425(broad,due tohydrogen-bondedOH)cm−1 and 1678and

1510cm−1(C C)forafuranring.

Massspectrometryhasalsobeenusedtoelucidatethe

struc-tureofvouacapanes.High-resolutionelectronimpactionization

(HREIMS) has proved to be a useful tool (Arriaga et al., 2000;

Spindolaetal.,2009;Servatetal.,2012),aswellas,morerecently, electronsprayionization(Cabraletal.,2013;Oliveiraetal.,2017).

Analyticalstudiesandquantification

Accurateandreproducibleanalyticalmethodsarerequiredto

(4)

etal.(2008),Santosetal.(2008), Euzébioetal.(2009,2010), Galceranetal.(2011) Methyl

6␣,7␤-dihydroxyvouacapan-17␤-oate (22)

(␣)OH (␤)OH (␤)COOMe (␣)H (␣)Me (␤)Me MahajanandMonteiro(1973), Fascioetal.(1976),Arriagaetal. (2000),Rubingeretal.(2004), Omenaetal.,2006,Santosetal. (2008),Spindolaetal.(2009,2010, 2011),Díazetal.(2010) Methyl7␤-acetoxy-6␣

-hydroxyvouacapan-17␤-oate (23)

(␣)OH (␤)OAc (␤)COOMe (␣)H (␣)Me (␤)Me MahajanandMonteiro(1973), Servatetal.(2012)

6␣,7␤-diacetoxyvouacapan-14␤-al(24) (␣)OAc (␤)OAc (␣)H (␤)CHO (␣)Me (␤)Me Fascioetal.(1976) 6␣,7␤-Diacetoxyvouacapan-14␤-oate(25) (␣)OAc (␤)OAc (␣)H (␤)COOMe (␣)Me (␤)Me Fascioetal.(1976) Methyl6␣-acetoxy-7␤

-hydroxyvouacapan-17␤-oate (26)

(␣)OAc (␤)OH (␤)COOMe (␣)H (␣)Me (␤)Me Fascioetal.(1976),Camposetal. (1994),Hoscheidetal.(2012), Servatetal.(2012),Oliveiraetal. (2017)

Methyl6␣-hydroxy-7␤ -acetoxyvouacapan-17␤-oate (27)

(␣)OH (␤)OAc (␤)COOMe (␣)H (␣)Me (␤)Me Fascioetal.(1976),Hoscheidetal. (2012),Servatetal.(2012)

6␣-Hydroxy-7␤ -acetoxyvouacap-14(17)-ene

(28)

(␣)OH (␤)OAc C=CH2 (␣)Me (␤)Me Camposetal.(1994)

Vouacapane-6␣,7␤,14␤,19-tetraol(29) (␣)OH (␤)OH (␣)Me (␤)OH (␤)CH2OH (␣)Me Demuneretal.(1996),Arriaga etal.(2000),Vieiraetal.(2008) 6␣-Acetoxyvouacapane(30) (␣)OAc (␤)H (␣)Me (␤)H (␣)Me (␤)Me Pimentaetal.(2006)

6␣-Hydroxyvouacapane(31) (␣)OH (␤)H (␣)Me (␤)H (␣)Me (␤)Me Arriagaetal.(2000),Pimentaetal. (2006)

Vouacapane(32) (␣)H (␤)H (␣)Me (␤)H (␣)Me (␤)Me Pimentaetal.(2006) 6␣,7␤-Dihydroxyvouacapan-17␤

-methylene-ol (33)

(␣)OH (␤)OH (␤)CH2OH (␣)H (␣)Me (␤)Me Spindolaetal.(2009)

6␣-Acetoxy-7␤-hydroxyvouacapan(34) (␣)OAc (␤)OH (␣)Me (␤)H (␣)Me (␤)Me Spindolaetal.(2009) 6␣,19␤-Diacetoxy-7␤,14␤

-dihydroxyvouacapan (35)

(␣)OAc (␤)OH (␤)OH (␣)Me (␣)Me (␣)OAc Oliveiraetal.(2017)

6␣-Acetoxy-7␤,14␤-dihydroxyvouacapan (36)

(␣)OAc (␤)OH (␤)OH (␣)Me (␣)Me (␤)Me Oliveiraetal.(2017)

orbiologicalsamples.Fingerprintingisindicatedforthe

qualita-tivedistinction ofsampleswithcomplex chemical composition

(Sawayaetal.,2010).Itcoversthescanningofavastnumberof intracellularmetabolitesdetectedbya selectedanalytical tech-niqueorbyacombinationofdifferenttechniques(Villas-Boasetal., 2005).

Cabraletal.(2013)usedmassspectrometryforfingerprintingP. emarginatusfruitoil.Thefruitsurfaceorpaperimprintedwiththe oilwasdirectlyanalyzedbyinfusionelectrosprayionizationmass spectrometry(DIESI-MS),aswellasbydesorption/ionizationvia easyambientsonic-sprayionizationmassspectrometry(EASI-MS). TypicalprofileswereobtainedfromthecrudeoilviathesedirectMS techniques.ThemainadvantagesofMSoverothertechniquesused

forfingerprintingareitshighsensitivityandselectivity(Villas-Boas etal.,2005;Dettmeretal.,2007).

Few studies have focused on quantifying Pterodon

vouaca-panes. Hoscheid et al. (2012) developed and validated a gas

chromatography method to quantify methyl 6␣-acetoxy-7␤

-hydroxyvouacapan-17␤-oate (26) and methyl 6␣-hydroxy-7␤

-acetoxyvouacapan-17␤-oate(27)in a semipurifiedextract of P. emarginatus fruits.Samples were quantified following

purifica-tion,whichincludedliquid–liquidpartitioningandopen-column

chromatography.Oliveira (2014)proposedanalternative

HPLC-PDA method to quantify 26 in P.emarginatus fruits. The main

(5)

Pharmacologicalactivities

Authorshavesuggestedthatthevouacapaneskeletonoffuran

diterpenesis linked withcertain pharmacologicalproperties of

extractsfromPterodonfruits(Carvalhoetal.,1999;Euzébioetal., 2009;Spindolaetal.,2010;Galceranetal.,2011;Nuccietal.,2012). Thissectiondescribesthepossiblepharmacologicalactivitiesand

actionmechanismsofvouacapanesisolatedfromPterodonfruits,

basedoninvitroandinvivostudies.

Anti-inflammatory,antinociceptiveandanalgesicactivities

Duetopotentialsideeffectsandlowefficacyofsyntheticand

chemicaldrugs,consumptionofothercomplementarydrugs,

espe-ciallyherbalremedies,tocontrolpainisincreasing(Bahmanietal.,

2014).Painisdefined as“anunpleasantsensoryand emotional

experienceassociatedwithactualorpotentialtissuedamage,or describedintermsofsuchdamage”(MerskeyandBogduk,1994). Thus,painhassensory,affectiveandacognitivecomponent asso-ciatedwiththeanticipationoffutureharm(Garland,2012).The nociceptionisthesensorycomponent(LoeserandTreede,2008). Inflammatoryresponsesintheperipheralandcentralnervous

sys-temsplaykeyrolesinthedevelopmentandpersistenceofmany

pathologicalpainstates(ZhangandAn,2007).

Variousneurotransmittersand receptorsystems takepartin

themodulationofpainprocessesinthecentralnervoussystem

and peripheral nervous system, such as the vanilloid, opioid,

non-opioids(i.e.␤-adrenergic,dopaminergic),glutamate,protein kinase C, potassium ion (K+) channels, and nitric oxide/cyclic

guanosinemonophosphatepathways(JuliusandBasbaum,2001;

Zakariaetal.,2016).Theantinociceptiveactionofthevouacapans isolatedfromPterodonwasassessedinchemicalandthermal mod-elsofnociceptioninmice,suchasaceticacid-inducedabdominal constriction,pawcompression,formalinandhotplatetest.

The first evidence that vouacapan has an analgesia effect

wasdemonstratedbyinhibitionofaceticacidwrithingresponse

in mice (Duarte et al., 1992).The authors assessed the role of endogenousopioidpeptidesintheantinociceptiveeffectinduced by6␣,7␤-dihydroxyvouacapan-17␤-oatesodium(20),usingacetic

acid-inducedabdominalcontortionandpawcompressiontestson

mice.Inbothmodels,compound20causedadose-dependent

anal-gesiawhenadministeredthroughoral(p.o.),intraperitoneal(i.p.), andsubcutaneous(s.c.)routes(rangingfrom62.5to500␮mol/kg).

Results showed that opioid antagonists only partially blocked

theantinociceptiveeffect.Theauthorssuggestedthatendorphin releasemaybeinvolved inthevouacapane’sanalgesiceffect.In anotherstudy,Duarteetal.(1996)assessedthepossible involve-mentofbiogenicaminesintheantinociceptiveeffectof20,using

aceticacid-inducedabdominalcontortiononmice.Thiscompound

exhibitedanantinociceptiveeffect(500␮mol/kg,i.p.)when com-paredwiththecontrolgroup.Resultssuggestedthatvouacapane’s

antinociceptiveresponsemaybeassociatedwithdopamine.

Spindola et al. (2010) examined the contribution of

geranylgeraniol (acyclic diterpene) and methyl 6␣,7␤

-dihydroxyvouacapan-17␤-oate(22)isolatedfromP.emarginatus fruits in the extract’s antinociceptive activity. The open field testwasperformedtoruleoutthepossibilitythatthe antinoci-ceptiveeffects of geranylgeranioland 22 are linked tospecific

disturbancesin animals’locomotion(30mg/kg or82.8␮mol/kg,

i.p.). Compounds reduced acetic acid-induced abdominal

con-tortionsonmicetreatedviai.p.andp.o.routes,withdifferences

in potency being linked to administration routes (10, 30, 100,

and 300mg/kg). Results suggested that the diterpenes essayed

mayproducesynergisticactivity.Followingtheuseofnaxolone

hydrochloride (1mg/kg or 2.75␮mol/kg, p.o.), a non-specific

opioidantagonist,inthehot-platetest,itwasconcludedthatthe

antinociceptive activity is unrelated to opioidergic routes and

canbelinkedtotheinvolvementofVR1vanilloidreceptorsand

peripheralglutamatereceptors.

In a follow-up tothe previousstudy, Spindola et al.(2011)

investigated the possible action mechanisms involved in the

antinociceptiveactivityofgeranylgeranioland22.Theallodynia

test,which assessedthetouchresponse ofmicesubmittedtoa

subplantarinjectionofcompleteFreund’sadjuvant(CFA; Mycobac-terium tuberculosis, 1mg/ml), showed that compounds tested (30mg/kg,or103.3␮mol/kgofgeranylgeranioland82.8␮mol/kg ofcompound 22;i.p.)reduced painsensitivityduringtheacute

phase. In the hyperalgesia test, which verified response to a

painful stimulus, mice treated with geranylgeraniol showed a

significant reduction in carrageenan-induced hypernociception.

Regarding the action mechanism, the antinociceptive

activ-ity of geranylgeraniol and 22 during the acetic acid-induced

contortion test may be related to serotonergic and imidazole

systems.

Servat et al. (2012) assessed the antinociceptive activity of themixtureofisomersmethyl7␤-acetoxy-6␣ -hydroxyvouacapan-17␤-oate(23)and26.Thetreatmentdidnotsignificantlychange animals’locomotionandreducedaceticacidabdominalcontortions

inmiceinadose-dependentmanner,whencomparedwiththe

con-trolgroup,presentinganeffectivedose50(ED50)of35.6mg/kg(or 88␮mol/kg).Moreover,theformalintestshowedthatthe antinoci-ceptiveactivityoftheisomermixtureis moreclosely linkedto neuropathicpainthantoinflammatorypain.Intheallodyniatest, thedosestested(30mg/kgor74.2␮mol/kg;i.p.)provedeffective

inthefirsttwo phases:acute andsubacute(4and 24h

follow-ingCFAadministration).Inthehyperalgesiatest,themixtureof

vouacapane isomers was not effective in reducing pain, which

suggeststhatthesampleshowsahigheraffinityforneuropathic components.

Galceranetal.(2011)assessedtheanti-inflammatoryand anal-gesicpotentialof6␣,7␤-dihydroxyvouacapan-17␤-oicacid(21).

Oral administration of 50mg/kg (equivalent to 143.5␮mol/kg)

of21 inhibitedtheinflammatory mechanismstriggeredby

car-rageenanandprostaglandinE2,whilenotsignificantlyinhibiting

theedemaproducedbydextran.Theaceticacid-induced

contor-tiontestshoweddose-dependentinhibitioninmicetreatedorally withthediterpene(50,200or400mg/kgp.o.).Intheformalintest,

21showedantinociceptiveactivityonneurogenicand

inflamma-torypainmodelsinmicegivenoraltreatment(50and100mg/kg

p.o.).However,inthe100mg/kg(or287␮mol/kg)dose(p.o.),the compoundwasnotabletoincreasethelatencytimeduringthe hot-platetest.Together,theseresultssuggestthat21hasperipheral anti-inflammatoryandanalgesiceffects.

Todate,fewvouacapanediterpenesfromPterodonhavebeen

evaluated for anti-inflammatory and antinociceptive activities.

Sincethetestsevaluatedonlyonevouacapaneatatime,thereis notacomparisonregardingthepotentialofdifferentvouacapanes.

The antinociceptive effect of vouacapans may involve multiple

mechanismsofactionasopioid,catecholaminergic,vanilloid, glu-tamate,serotonergicandimidazolesystems.Thesedatashowthat vouacapanshaveapromisingeffectasantinociceptivesubstances. Itisexpectedthatfurtherstudiesinvolvingtoxicitytrialswillbe carriedoutinordertoensureasafeuseofthesesubstances.Thus, despitesignificantresults,theevaluationsmadesofarhavebeen limitedtopreliminarytests,involvingonlyfivecompounds.

Larvicidalactivity

Aedesaegyptimosquitoesarevectorsfortransmittingseveral arbovirusessuchaszika(ZIKV),chikungunya(CHIKV),anddengue

(DENV).AccordingtotheWorldHealthOrganization(WHO),DENV,

(6)

acetoxyvouacapane (30) against stage 3 Aedes aegypti larvae,

in concentrations ranging from 12.5 to 500␮g/ml. Compound

30 showedmedian lethal concentration(LC50)of 186.21␮g/ml

(540.5nmol/ml).FeaturinganLC50of24␮g/mlinthisstudy,the

hexanicextractshowedtobemorepromisingthantheisolated

vouacapane.Thisstudydidnotinvestigatewhethersucha remark-ablevaluewasduetosynergicactionoftheconstituentsfromthe hexanicfractionortothepresenceintheoilofsomemorepotent vouacapanes.Itseemsclearthatthechoiceofanaturalproduct foreffectivelycontrollingAedesmosquitoshouldtakeintoaccount

many other factors besideslethal concentration,like resources

availabilityandthecostsforobtainingthisproduct.Inthestudy ofPimentaetal.(2006),1.5kgoffruitsyielded364gofhexanic

extractandonly181mgofcompound17afterachromatographic

elution.Therefore,thishexanicextractseemstobemore promis-ingthanthePterodonvouacapanesassesseduntilnow.Inthisstudy, plainoilwasnotevaluatedagainstthelarvae.

In partnership with our group, Oliveira et al. (2016) found

thatLC50 fora nanoemulsionofPterodon oilis about35␮g/ml, whichreinforcesthepotentialofnon-purifiedPterodonproducts. Thus, furtherlarvicidal studiesshould involve chemically

well-characterizedoilsinsteadof isolated vouacapanes,which could

alsobeassessedagainstotherspeciesofmosquito.Surveysonthe availabilityoftheplantsthatproduceasuitableoilaswellason theeconomicfeasibilityoftheapproachbasedonlarvaecontrol arerequired.DuetothelowmiscibilityofPterodonoilinwater,

nanoemulsionspreparedbyalowenergyandsolvent-freemethod,

asoptimizedbyOliveiraetal.(2016),shouldbeconsideredin fur-therstudies.

Leishmanicidalactivity

Leishmaniasisiswidelydistributedacross88tropical,

subtrop-icaland temperate countries,affecting about12 millionpeople

worldwide(Georgiadouetal.,2015).Leishmaniasisiscausedby aprotozoaparasitefromover20Leishmaniaspeciesandis

trans-mitted tohumansby thebiteof infected femalephlebotomine

sandflies (WHO, 2017a).In 2014,more than90% of new cases

reportedtoWHOoccurredinsixcountries:Brazil,Ethiopia,India,

Somalia, South Sudan and Sudan (WHO, 2017b).Current

clini-callyuseddrugs against leishmaniasisare relatedto numerous

shortfallsincludingtoxicity,mustbeadministeredoverprolonged periodsandareoftenassociatedwithserioussideeffects(Croftand Coombs,2003).Thus, itisnecessarytodevelopmentnew leish-manicidalagents.

Oliveiraetal.(2017)testedtheleishmanicidalactivityof

com-pound26againstpromastigotesofLeishmaniaamazonensisandL.

braziliensis,inconcentrationsrangingfrom8.0to128.0␮g/ml,and

Cardiovascular-relatedactivity

Cardiovasculardiseasescoverarangeofheartandbloodvessel disorderse.g.coronaryheart,cerebrovascular,peripheralarterial, andrheumaticheartdiseases,andWHOestimatesthat17.5million peopleworldwidediefromheart-relateddiseaseseachyear(WHO, 2016d).Someofthesedisordersinvolveoneormoreriskfactors suchashypertension,diabetes,hyperlipidemiaorotherestablished diseases.Severalnaturalproductshavebeenusedtoalleviateor preventsomeofthesedisordersorrelatedevents,suchascardiac glycosidesandreserpine.

Reis et al. (2015) assessed blood vessel relaxation and the

possibleactionmechanisms ofcompound 26in isolatedmouse

aortapreparations.Resultssuggestedthat26induces

endothelium-independent vascular relaxation by blocking the L-type Ca2+

channel(Cav1.2).Theseresultssupportapossiblecardiovascular

effectofcompound26 andPterodonoilthroughvascular

dilata-tion;however,noneofthemanyotherPterodonvouacapaneswas

assessed.Sincethisclassrevealedapotentialforuseasa cardio-vascularrelaxationagent,othervouacapanesshouldalsobetested inpreliminarystudies.Furtherinvestigationsofthemost

promis-ingsubstancesshouldincludeassessmentsinhumantissuesand

invivosystems.

Cytotoxicityandantitumoractivity

Certain substances, such as verapamil or cyclosporine, have

beenusedtoovercomemultidrugresistance(MDR),animportant

obstacletothesuccessofcancerchemotherapy.However,these

P-gpmodulatingagents havenotshown significantpotentialin

clinicalpractice(Meschinietal.,2003),andtheidentificationof newcompoundswithfewsideeffectsishighlydesirable.The induc-tionofapoptosisrepresentsacriticalfactorincancertherapyand contributedtosignificantanti-tumoractivityforthecompounds associatedwithcytotoxicityproperties withpotentialtoinhibit cellulareventsrelatedtotheprogressionoftumors.

Vieira et al. (2008) assessed the antiproliferative activity of

29viaMTT(3-(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium

bromide)colorimetricassaybyusingSK-MEL-37humanmelanoma

cells,inconcentrationsrangingfrom1.4to92␮mol/l,andshowed inhibitory concentration 50% (IC50) of 32␮mol/l. Doxorubicin (positivecontrol)showedanIC50valueof35␮mol/L,similartothat ofthevouacapanetested.Thisresultshowedthatthevouacapanes testeddisplayedcytotoxicityactivityagainstthetestedcellline.

Spindola et al. (2009) tested the activity of

(7)

(34)againsthumantumorcelllinesUACC-62(melanoma),MCF-7

(breast), NCI-H460 (lung), OVCAR-03 (ovary), PC-3 (prostate),

HT-29(colon),786-0(kidney),K562(leukemia),andNCI-ADR/RES

(ovary withmultidrug resistancephenotype). Cell proliferation

wasdeterminedbyspectrophotometricquantificationofcell

pro-teincontentviasulphorhodamineB.Compound34was26times

morepotentininhibiting50%growth(GI50)ofPC-3(prostate),15 timesmorecytostatic(totalgrowthinhibition–TGI),andsixtimes lesstoxicthantheconcentrationleadingto50%celldeath(LC50)

whencomparedwiththecontrol(doxorubicin).

Thisstudyalsoassessedthecytotoxicityofcompounds22,33, and34againstnormalmurinecellline(3T3)usingtheMTTmethod, inconcentrationsrangingfrom0.25to250␮g/ml.Regarding cyto-toxicity against 3T3, 34 had less toxicity (IC50 of 34.33␮g/ml, equivalentto95.2nmol/ml),followedby33(IC50of23.55␮g/ml, equivalentto70.4nmol/ml)and22(IC50of22.83␮g/ml,equivalent to63.0nmol/ml).Compounds22,33,and34presentedhigh selec-tivityfor prostatecancer. Theselectiveactivityagainstprostate

cancercells and thelower cytotoxicityover normal cells show

Pterodonvouacapanesmeritfurtherinvestigationsinaneffortto developselectivemedicinesthattreatcancerwithgreaterpatient safetyinthefuture.

Formoreinformationontheantiproliferativeactivityof fura-noditerpenesagainstdifferentcelllines,newactiveconstituents weresynthesizedfrom21isolatedfromP.emarginatusfruits.

Euzébio et al. (2009) synthesized three lactones deriva-tives from 21: 6␣-hydroxyvouacapan-7␤,17␤-lactone (38), 6␣

-acetoxyvouacapan-7␤,17␤-lactone (37), and

6-oxovouacapan-7␤,17␤-lactone(39).The antiproliferative activityof21 and its

derived lactones was assessed against thesame human cancer

celllinesusedbySpindolaetal.(2009).Compound38 wasthe

mostactiveofthefourfuranoditerpenes,aswellasmorepotent ininhibiting50%growth(GI50)ofadriamycin-resistantovary can-cercells(NCI-ADR/RES)anderythromyeloblastoidleukemia(K562)

whencomparedwithdoxorubicin.Compound37onlyshoweda

growthinhibition effectagainst erythromyeloblastoid leukemia

cells (GI50 of27.4␮g/ml, or73.6nmol/ml). Resultsindicated 38 asthemostpromisingderivativeforfuturestudies,inadditionto theimportanceof7␤,of17␤-lactonering,andoftheC-6hydroxyl groupfortheantiproliferativeactivityof38.

In a follow-up to the previous study, Euzébio et al. (2010)

synthesized six new derived amines from lactone derivative

38: 16-(N,N-diethylaminomethyl)-6␣

-hydroxyvouacapan-7␤,17␤-lactone (40); 16-(N,N

-dipropylaminomethyl)-6␣-hydroxyvouacapan-7␤,17␤-lactone (41); 16-(N,N

-diisobutylaminomethyl)-6␣-hydroxyvouacapan-7␤,17␤-lactone (42); 16-(1-pyrrolidinylmethyl)-6␣-hydroxyvouacapan-7␤,17␤

-lactone (43); 16-(1-piperidinylmethyl)-6␣

-hydroxyvouacapan-7␤,17␤-lactone (44); 16-(4-morpholinylmethyl)-6␣

-hydroxyvouacapan-7␤,17␤-lactone (45). These compounds

weretestedonthesamecancercelllinesfromthepreviousstudy

andweremorepotentagainstmostofthem,showinglowerGI50

valuesthanthoseobtainedfor38(Euzébioetal.,2009).Compounds

40–45were,likedoxorubicin(control),potentgrowthinhibitors

of adriamycin-resistant ovary cancer cells (NCI-ADR/RES), lung

cancer cells (NCI-H460), and erythromyeloblastoid leukemia

(K562).TheoreticalcalculationsshowedthatC-16aminogroups

may be crucial to the antiproliferative activity of vouacapane

derivatives.

The resultspresented in this topiccontributed toshow the

potentialofthecitedmoleculestoobtainprototypesfor

antitu-mordrugs.Theusualsubstancesemployednowadaysinantitumor

therapypresentseveralsideeffects,andinthiscontextthesearch fornewstructureswithmorespecificitycouldbeagoodstrategy infutureinvestigationsregardingcytotoxicityeffects.

H

H

OH

H

O

OH

CO

2

H

1

2

3 4

18 19 5

6 7 8 9

10 2011

12

13

14

17 15 16

41

R

1

=R

2

= -CH

2

-CH

3

42

R

1

=R

2

= -CH

2

-CH

2

-CH

3

43

R

1

=R

2

= -CH

2

-CH

2

-(CH

3

)

2

44

R

1

and

R

2

= -CH

2

-CH

2

-CH

2

-CH

2

45

R

1

and

R

2

= -CH

2

-CH

2

-CH

2

-CH

2

-CH

2

46

R

1

and

R

2

= -CH

2

-CH

2

-O-CH

2

-CH

2

N

1'

1" 2" 3"

1" 2" 2" 1"

2" 1" 1" 2"

R

2

R

2

1" 2" 3" 2" 1"

Technologicalapplications

Vouacapanescanbeusedasphytochemicalmarkerforquality

controlandstandardizationoftheproductsderivedfromPterodon duetotheirpharmacologicalactivities.Aimingtomaskthetaste

of theextractsstandardized in vouacapans, sometechnological

alternativeshavebeendevelopedfortheoilsofPterodonspecies,

suchas microcapsulesin polymeric systems

(alginate/medium-molecular-weightchitosan(F1-MC),alginate/chitosanwithgreater

than 75% deacetylation (F2-MC), and

alginate/low-molecular-weightchitosan(F3-MC))(Reinasetal.,2014).

Nanoemulsionsareanalternativetodrugdeliveryforlipophilic

compounds, which can be administrated via oral, ocular, and

intravenousinordertoreducesideeffectsandtoimprove pharma-cologicalproperties(Solansetal.,2005;HormanandZimmer,2016; Singhetal.,2017).Hoscheidetal.(2017)optimizedananoemulsion withP.pubescensoil,whichprovidedfasterinjectionsduring

intra-muscularadministration,comparingtoconventionalformulation.

In thisstudy,thenanoemulsionsystemwasevaluated for

(8)

only recently has beenused in their obtainment. New studies

areencouragedtocarry outa phytochemicalassessmentofthe

rawmaterialandtoconsiderthepossibilityofpurifying

minor-ityvouacapanestobetested,sincethestudiesaccomplishedso

far only encompass a small portion of Pterodon vouacapanes.

Anti-inflammatory,antinociceptiveandanalgesicactivitieswere confirmedbyscientificstudiesinanimals.However,thereisstill alackofscientificsupportjustifyingtheproductionofamedicine withthesecompounds.Toxicityandsafetyevaluationstudiesare stillneededtoassuresafetyforclinicalapplication.The pharma-ceuticaltechnologyaimingatsuitabledeliveryofthevouacapanes, inthedifferentapplications,isalsoveryscarce.Newpreliminary studiesregardingthecardiovascularandleishmanicidalactivities

shouldbecarriedoutwithothervouacapanes,beforemore

spe-cificassessmentswiththeoneswhichprovetobemostpotent.In ouropinion,Pterodonoiloroil’sfractionsaremoreconvenientthan vouacapanesforlarvicidalactivity,andseemstobemore promis-ingforfutureresearch.Asthelatesttrendsandperspectivesfor

futureresearchofPterodonvouacapaneswesuggesttheneedfor

studiesregardingthesustainabilityoftheplantspeciesaimingat theproductionofmedicines.

Authorscontributions

LARO, GARO and LLB contributed to the concept, literature

searchandwritingofthisreviewarticle.DSandMTFBcontributed totheconceptandcriticalreadingofthisreview.

Conflictsofinterest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

WewouldliketothankUniversidadedeBrasília,Universidade

FederaldeGoiás,UniversidadeEstadualdeGoiás,FAP-DF,Capes

andCNPqforthefinancialsupport.

References

Arriaga,A.M.C.,Castro,M.A.B.,Silveira,E.R.,Braz-Filho,R.,2000.Furtherditerpenoids isolatedfromPterodonpolygalaeflorus.J.Braz.Chem.Soc.11,187–190. Bahmani,M.,Shirzad,H.,Majlesi,M.,Shahinfard,N.,Kopaei,M.R.,2014.Areview

studyonanalgesicapplicationsofIranianmedicinalplants.AsianPac.J.Trop. Med.7,43–53.

Balmain,A.,Bjamer,K.,Connoly,J.D.,Ferguson,G.,1967.Theconstitutionand ste-reochemistryof-- -caesalpin.C TetrahedronLett.8,5027–5031.

Bao,H.,Zhang,Q.,Ye,Y.,Lin,L.,2016.Naturallyoccurringfuranoditerpenoids: dis-tribution,chemistryandtheirpharmacologicalactivities.Phytochem.Rev.16, 235–270.

2006.Cassane-typediterpenesfromtheseedsofCaesalpiniacrista.Helv.Chim. Acta89,1062–1066.

Cheng,S.S.,Chang,H.T.,Chang,S.T.,Tsai,K.H.,Chen,W.J.,2003.Bioactivityofselected plantessentialoilsagainsttheyellowfevermosquitoAedesaegyptilarvae. Biore-sour.Technol.89,99–102.

Coelho,L.P.,Reis,P.A.,Castro,F.L.,Gayer,C.R.M.,Lopes,C.S.,Silva,M.C.C.,Sabino, K.C.C.,Todeschini,A.R.,Coelho,M.G.P.,2005. Antinociceptivepropertiesof ethanolicextractandfractionsofPterodonpubescensBenth.seeds.J. Ethnophar-macol.98,109–116.

Corrêa,M.P.,1975.DicionáriodasplantasúteisdoBrasiledasexóticascultivadas. InstitutoBrasileirodeDesenvolvimentoFlorestal,RiodeJaneiro.

Cota,B.B.,Oliveira,D.M.,Siqueira,E.P.,Fagundes,E.M.S.,Pimenta,A.M.C.,Santos, D.M.,Rabello,A.,Zani,C.L.,2011.NewcassanediterpenesfromCaesalpinia echi-nata.Fitoterapia82,969–975.

Croft,S.L.,Coombs,G.H.,2003.Leishmaniasis–currentchemotherapyandrecent advancesinthesearchfornoveldrugs.TrendsParasitol.19,502–508. Das,B.,Srinivas,Y.,Sudhakar,C.,Mahender,I.,Laxminarayana,K.,Reddy,P.R.,Raju,

T.V.,Jakka,N.M.,Rao,J.V.,2010.NewditerpenoidsfromCaesalpiniaspeciesand theircytotoxicactivity.Bioorg.Med.Chem.Lett.20,2847–2850.

Demuner,A.J.,Barbosa,L.C.A.,Veloso,D.P.,Alves,L.D.F.,Howarth,O.W.,1996. Struc-tureandplantgrowthregulatoryactivityofnewditerpenesfromPterodon polygalaeflorus.J.Nat.Prod.59,770–772.

Dettmer, K., Aronov, P.A., Hammock, B.D., 2007. Mass spectrometry-based metabolomics.MassSpectrom.Rev.26,51–78.

Dewick,M.P.,2002.MedicinalNaturalProducts:ABiosyntheticApproach.John Wiley&Sons,NewYork.

Díaz,B.K.,Santos,F.J.,Rubinger,M.M.,Veloso,D.P.,Hennsen,B.L.,2006.Aditerpene ␥-lactonederivativefromPterodonpolygalaeflorusBenth.asaphotosystemII inhibitoranduncouplerofphotosynthesis.J.Biosci.61,227–233.

Díaz,B.K.,Branco,P.A.C.,Santos,F.J.L.,Rubinger,M.M.M.,Alves,D.L.F.,Veloso,D.P., Hennsen,B.L.,2010.Furanoditerpeneesterandthiocarbonyldeoxyderivatives inhibitphotosynthesis.Pest.Biochem.Physiol.96,119–126.

Dong,R.,Yuan,J.,Wu,S.,Huang,J.,Xu,X.,Wu,Z.,Gao,H.,2015.Anti-inflammation furanoditerpenoids from Caesalpinia minax Hance. Phytochemistry 117, 325–331.

Duarte,I.D.G.,Alves,D.L.F.,Craig,M.N.,1992.Possibleparticipationofendogenous opioidpeptidesonthemechanisminvolvedinanalgesiainducedbyvouacapano. LifeSci.50,891–897.

Duarte,I.D.G.,Alves,D.L.F.,Veloso,D.P.,Craig,M.N.,1996.Evidenceofthe involve-mentofbiogenicaminesintheantinociceptiveeffectofavouacapanextracted fromPterodonpolygalaflorusBenth.J.Ethnopharmacol.55,13–18.

Dutra,R.C.,Leite,M.N.,Barbosa,N.R.,2008.Quantificationofphenolicconstituents andantioxidantactivityofPterodonemarginatusVogelseeds.Int.J.Mol.Sci.9, 606–614.

Dutra,R.C.,Braga,F.G.,Coimbra,E.S.,Silva,A.D.,Barbosa,N.R.,2009.Atividade antimicrobianaeleishmanicidadassementesdePterodonemarginatusVogel. Rev.Bras.Farmacogn.19,429–435.

Euzébio,F.P.G.,Santos,F.J.L.,Veloso,D.P.,Ruiz,A.L.T.G.,Carvalho,J.E.,Alves,D.L.F., Fátima,A.,2009.Effectof6␣,7␤-dihydroxyvouacapan-17␤-oicacidandits lac-tonederivativesonthegrowthofhumancancercells.Bioorg.Chem.37,96–100. Euzébio,F.P.G.,Santos,F.J.L.,Veloso,D.P.,Alcântara,A.F.C.,Ruiz,A.L.T.G.,Carvalho, J.E.,Foglio,M.A.,Alves,D.L.F.,Fátima,A.,2010.Synthesis,antiproliferative activ-ityincancercellsandtheoreticalstudiesofnovel 6␣,7␤-dihydroxyvouacapan-17␤-oicacidMannichbasederivatives.Bioorg.Med.Chem.18,8172–8177. Fagg,C.W.,Lughadha,E.M.,Milliken,W.,Hind,D.J.N.,Brandão,M.G.L.,2015.Useful

BrazilianplantslistedinthemanuscriptsandpublicationsoftheScottishmedic andnaturalistGeorgeGardner(1812–1849).J.Ethnopharmacol.161,18–29. Fascio,M.,Mors,W.B.,Gilbert,B.,Mahajan,J.R.,Monteiro,M.B.,SantosFilho,D.,

Vich-newski,W.,1976.DiterpenoidfuransfromPterodonspecies.Phytochemistry15, 201–203.

(9)

Gao,T.,Yao,H.,Song,J.,Liu,C.,Zhu,Y.,Ma,X.,Pang,X.,Xu,H.,Chen,S.,2010. Identifi-cationofmedicinalplantsinthefamilyFabaceaeusingapotentialDNAbarcode ITS2.J.Ethnopharmacol.130,116–121.

García, P.A., Oliveira, A.B., Batista, R., 2007. Occurrence, biological activities and synthesis of kaurane diterpenes and their glycosides. Molecules12, 455–483.

Garland,E.L.,2012.Painprocessinginthehumannervoussystem:aselectivereview ofnociceptiveandbiobehavioralpathways.Prim.CareClin.OfficePract.39, 561–571.

Georgiadou,S.R.,Makaritsis,K.P.,Dalekos,G.N.,2015.Leishmaniasisrevisited: cur-rentaspectsonepidemiology,diagnosisandtreatment.J.Transl.Int.Med.3, 43–50.

Godoy,R.L.,Lima,P.D.D.B.,Pinto,A.C.,AquinoNeto,F.R.,1989.Diterpenoidsfrom Dypterixodorata.Phytochemistry28,642–644.

Grandi, T.S.M., Trindade, J.A., Pinto, M.J.F., et al., Ferreira, L.L., Catella, A.C., 1989. Plantas Medicinais de Minas Gerais, Brasil. Acta Bot. Bras. 3, 185–224.

Hamburger,M.,Hostettmann,K.,1991.Bioactivityinplants:thelinkbetween phy-tochemistryandmedicine.Phytochemistry30,3864–3874.

Hansen,D.,Haraguchi,M.,Alonso,A.,2010.Pharmaceuticalpropertiesof“sucupira” (Pterodonspp).Braz.J.Pharm.Sci.46,607–616.

Hanson,J.R.,1995.Diterpenoids.Nat.Prod.Rep.12,207.

Horman,K.,Zimmer,A.,2016.Drugdeliveryanddrugtargetingwithparenterallipid nanoemulsions–areview.J.Control.Release223,85–98.

Hoscheid,J.,Reinas,A.,Cortez,D.A.G.,Costa,W.F.,Cardoso,M.L.C.,2012. Deter-minationbyGC–MS-SIMoffuranoditerpenesinPterodonpubescensBenth.: developmentandvalidation.Talanta100,372–376.

Hoscheid,J.,Amado,C.A.B.,Rocha,B.A.,Outuki,P.M.,Silva,M.A.R.C.P.,Froehlich, D.L., Cardoso, M.L.C., 2013. Inhibitory effect of the hexane fraction of the ethanolic extract of the fruits of Pterodon pubescens Benth. in acuteand chronicinflammation.Evid. BasedComplement.Alternat.Med., http://dx.doi.org/10.1155/2013/272795.

Hoscheid,J.,Outuki,P.M.,Kleinubing,S.A.,Silva,M.F.,Bruschi,M.L.,Cardoso,M.L.C., 2015.DevelopmentandcharacterizationofPterodonpubescensoil nanoemul-sionsasapossibledeliverysystemforthetreatmentofrheumatoidarthritis. ColloidsSurf.A484,19–27.

Hoscheid,J.,Outuki,P.M.,Kleinubing,S.A.,Goes,P.R.N.,Lima,M.M.S.,Cuman,R.K.N., Cardoso,M.L.C.,2017.Pterodonpubescensoilnanoemulsion:physiochemicaland microbiologicalcharacterizationandinvivoanti-inflammatoryefficacystudies. Rev.Bras.Farmacogn.27,375–383.

Hrckova,G.,Velebny,S.,2013.PharmacologicalPotentialofSelectedNatural Com-poundsintheControlofParasiticDiseases.Springer,NewYork.

Hurtado,M.G.,Esquivel,F.E.A.,García, G.R.,Pacheco,M.M.M., Madrigal,R.M.E., Bola ˜nos,T.P.,Hernández,J.L.S.,Gutiérrez,H.A.G.,Rojas,C.M.C.G.,Nathan,P.J., Rio,R.E.,2013.CassanediterpenesfromCaesalpiniaplatyloba.Phytochemistry 96,397–403.

Jadhav,A.N.,Kaur,N.,Bhutani,K.K.,2003.Anewfuranoditerpenoidmarkerforthe distinctionbetweentheseedsoftwospeciesofCaesalpinia.Phytochem.Anal. 14,315–318.

Jiang,R.W.,Ma,S.C.,But,P.P.H.,Mak,C.W.,2001.Isolationandcharacterizationof spirocaesalmin,anovelrearrangedvouacapanediterpenoidfromCaesalpinia minaxHance.J.Chem.Soc.PerkinTrans.,http://dx.doi.org/10.1039/B107473N. Jiang, R.W.,Ma, S.C., He, Z.D., Huang, X.S., But, P.P.H., Wang, H., Chan,S.P.,

Ooi, V.E.C.,Xu, H.X., Mak, T.C.W., 2002. Molecular structures and antivi-ralactivitiesofnaturallyoccurringandmodifiedcassanefuranoditerpenoids andfriedelanetriterpenoidsfromCaesalpiniaminax.Bioorg.Med.Chem.10, 2161–2170.

Julius,D.,Basbaum,A.I.,2001.Molecularmechanismsofnociception.Nature413, 203–210.

Kido,T.,Taniguchi,M.,Baba,K.,2003.DiterpenoidsfromAmazoniancrudedrugof Fabaceae.Chem.Pharm.Bull.51,207–208.

Lian,L.,Li,X.B.,Yuan,J.Z.,Cheng,L.,Wu,Z.H.,Gao,H.Y.,2015.Twonew diter-penesfromtheseedsofCaesalpiniaminaxHance.J.AsianNat.Prod.Res.17, 893–899.

Loeser,J.D.,Treede,R.D.,2008.TheKyotoprotocolofIASPbasicpainterminology. Pain137,473–477.

Mahajan,J.R.,Monteiro,M.B.,1973.NewditerpenoidsfromPterodonemarginatus Vog.J.Braz.Chem.Soc.42,520–525.

Martins,C.N.,Martins,D.F.,Nascimento,L.F.,Venzke,D.,Oliveira,A.S.,Frederico, M.J.S.,Silva,F.R.M.B.,Brighente,I.M.C.,Pizzolatti,M.G.,Santos,A.R.S.,2015. Ame-liorativepotentialofstandardizedfruitextractofPterodonpubescensBenth.on neuropathicpaininmice:evidenceforthemechanismofaction.J. Ethnophar-macol.175,273–286.

Matsuno,Y.,Deguchi,J.,Hirasawa,Y.,Ohyama,K.,Toyoda,H.,Hirobe,C.,Ekasari, W.,Widyawaruyanti,A.,Zaini,N.C.,Morita,H.,2008.SucutiniranesAandB, newcassane-typediterpenesfromBowdichianitida.Bioorg.Med.Chem.Lett. 18,3774–3777.

Maurya, R., Ravi, M., Singh, S., Yadav, P.P., 2012. Areview on cassane and norcassane diterpenes and their pharmacological studies. Fitoterapia 83, 272–280.

Mcpherson,D.D.,Che,C.T.,Cordell,G.,Soejarto,D.D.,Pezzuto,J.M.,Fong,H.H.S.,1986. DiterpenoidsfromCaesalpiniapulcherrima.Phytochemistry25,167–170. Mendes,F.N.,Silveira,E.R.,1994.Fattyacids,sesqui-andditerpenoidsfromseedsof

Dipteryxlacunifera.Phytochemistry35,1499–1503.

Merskey,H.,Bogduk,N.,1994.ClassificationofChronicPain,IASPTaskForceon Taxonomy.IASPPress,Seattle.

Meschini,S.,Marra,M.,Calcabrini,A.,Federici,E.,Galeffi,C.,Arancia,G.,2003. Voacamine,a bisindolicalkaloid fromPeschiera fuchsiaefolia,enhancesthe cytotoxiceffectofdoxorubicinonmultidrug-resistanttumorcells.Int.J.Oncol. 23,1505–1513.

MinistériodaSaúde,2009.GuiadeVigilânciaEpidemiológica,Secretáriade Vigilân-ciaasSaúde,7ed.MinistériodaSaúde,Brasília(DF),813p.

Mitsui, T., Ishihara, R., Hayashi, K.I., Matsuura, N., Akashi, H., Nozaki, H., 2015. Cassane-type diterpenoids from Caesalpinia echinata (Legumi-nosae)andtheirNF-kBsignaling inhibitionactivities.Phytochemistry 116, 349–358.

Nucci,C.,Martins,L.M.,Stramosk,J.,Brethanha,L.C.,Pizzolatti,M.G.,Santos,A.R.S., Martins,D.F., 2012. Oleaginousextractfrom thefruits Pterodon pubescens Benth.inducesantinociceptioninanimalmodelsofacuteandchronicpain.J. Ethnopharmacol.143,170–178.

Ochieng,C.O.,Owuor,P.O.,Mang’uro,L.A.O.,Akala,H.,Ishola,I.O.,2012. Antinocicep-tiveandantiplasmodialactivitiesofcassanefuranoditerpenesfromCaesalpinia volkensiiH.rootbark.Fitoterapia83,74–80.

Odalo,J.O.,Joseph,C.C.,Nkunya,M.H.H.,Sattler,I.,Lange,C.,Dahse,H.M.,Mollman,U., 2009.Cytotoxic,anti-proliferativeandantimicrobialfuranoditerpenoidsfrom Stuhlmaniamoavi.Phytochemistry70,2047–2052.

Oliveira,L.A.R.,2014.Isolamento,quantificac¸ãoeavaliac¸ãodasatividades leish-manicidaetripanocidadefuranoditerpenosdooleorresinadePterodonspp. Vogel(Fabaceae).Goiânia.Dissertac¸ãodeMestrado,ProgramadePós-graduac¸ão emCiênciasFarmacêuticas,UniversidadeFederaldeGoiás,120p.

Oliveira,L.A.R.,Oliveira,G.A.R.,Lemes,G.F.,Romão,W.,Vaz,B.G.,Albuquerque,S., Gonc¸alez,C.,Lião,L.M.,Bara,M.T.F.,2017.Isolationandstructural characteriza-tionoftwonewfuranoditerpenesfromPterodonemarginatus(Fabaceae).J.Braz. Chem.Soc.,http://dx.doi.org/10.21577/0103-5053.20170118.

Oliveira,P.C.,2012.Obtenc¸ãoecaracterizac¸ãodoextratosecopadronizadodos fru-tosdasucupiraPterodonemarginatusVogel,Fabaceae.Goiânia.Dissertac¸ãode Mestrado,ProgramadePós-graduac¸ãoemCiênciasFarmacêuticas,Universidade FederaldeGoiás,146p.

Oliveira,A.E.M.F.M.,Duarte,J.L.,Amado,J.R.R.,Cruz,R.A.S.,Rocha,C.F.,Souto,R.N.P., Ferreira,R.M.A.,Santos,K.,Conceic¸ão,E.C.,Oliveira,L.A.R.,Kelecom,A., Fernan-des,C.P.,Carvalho,J.C.T.,2016.Developmentofalarvicidalnanoemulsionwith PterodonemarginatusVogeloil.PLOSONE11,1–16.

Omena,M.C.,Bento,E.S.,Paula,J.E.,Sant’ana,A.E.G.,2006.Larvicidalditerpenesfrom Pterodonpolygalaeflorus.VectorBorneZoonoticDis.6,216–222.

Pascoa,H.,Diniz,D.G.A.,Florentino,I.F.,Costa,E.A.,Bara,M.T.F.,2015.Microemulsion basedonPterodonemarginatusoilanditsanti-inflammatorypotential.Braz.J. Pharm.Sci.51,117–126.

Pereira,M.F.,Martino,T.,Dalmau,S.R.,Albano,R.M.,Férézou,J.P.,Costa,S.S.,Coelho, M.G.P.,Sabino,K.C.C.,2011.TerpenicsubfractionofPterodonpubescensinduces apoptosisofK562leukemiccellsbymodulatinggeneexpression.Oncol.Rep. 25,215–221.

Pereira,M.F.,Martino,T.,Dalmau,S.R.,Paes,M.C.,Fidalgo,C.B.,Albano,R.M.,Coelho, M.G.P.,Sabino,K.C.C.,2012.TerpenicfractionofPterodonpubescensinhibits nuclearfactorkappaBandextracellularsignal-regulatedproteinkinase1/2 acti-vationandderegulatesgeneexpressioninleukemiacells.BMCComplement. Altern.Med.12,231–239.

Peters,R.J.,2010.Tworingsinthemall:thelabdane-relatedditerpenoids.Nat.Prod. Res.27,1521–1530.

Pimenta,A.T.A.,Santiago,G.M.P.,Arriaga,A.M.C.,Menezes,G.H.A.,Bezerra,S.B.,2006. Estudofitoquímicoeavaliac¸ãodaatividadelarvicidadePterodonpolygalaeflorus Benth.(Leguminosae)sobreAedesaegypti.Rev.Bras.Farmacogn.16,501–505. Pizzolatti,M.G.,Cristiano,R.,Monache,F.D.,Branco,A.,2002.Artefatos

cumaríni-cosisoladosdePolygalapaniculataL.(Polygalaceae).Rev.Bras.Farmacogn.12, 21–26.

Pudhom,K.,Sommit,D.,Suwankitti,N.,Petsom,A.,2007.Cassane furanoditer-penoidsfromtheseedkernelsofCaesalpiniabonducfromThailand.J.Nat.Prod. 70,1542–1544.

Ragasa,C.Y.,Hofile ˜na,J.G.,Rideout,J.A.,2002.Newfuranoidditerpenesfrom Cae-salpiniapulcherrima.J.Nat.Prod.65,1107–1110.

Ragasa,C.Y., Ganzon,J.,Hofile ˜na,J.,Tamboong,B.,Rideout,J.A.,2003. Anew furanoid diterpene from Caesalpinia pulcherrima. Chem. Pharm. Bull. 51, 1208–1210.

Rai,M.,Acharya,D.,Rios,J.L.,2011.EthnomedicinalPlants:RevitalizingofTraditional KnowledgeofHerbs.SciencePublishers,NewHampshire.

Ramawat,K.G.,Mérillon,J.M.(Eds.),2013.NaturalProducts.Phytochemistry,Botany andMetabolismofAlkaloids,PhenolicsandTerpenes.Springer,Berlin. Raposo,N.R.B.,Dutra,R.C.,Ferreira,A.S.,2011.Biologicalpropertiesofsucupira

branca(Pterodonemarginatus)seedsandtheirpotentialusageinhealth treat-ments.In:Preedy,V.R.,Watson,R.R.,Patel,V.B.(Eds.),Nuts&SeedsinHealth andDiseasePrevention.Elsevier,NewYork,pp.1087–1095.

Reinas,A.E.,Hoscheid,J.,Outuki,P.M.,Cardoso,M.L.C.,2014.Preparationand char-acterizationofmicrocapsulesofPterodonpubescensBenth.byusingnatural polymers.Braz.J.Pharm.Sci.50,919–930.

Reis,F.C.,Andrade,D.M.L.,Neves,B.J.,Oliveira,L.A.R.,Pinho,J.F.,Silva,L.P.,Cruz,J.S., Bara,M.T.F.,Andrade,C.H.,Rocha,M.L.,2015.BlockingtheL-typeCa2+ chan-nel(Cav1.2)isthekeymechanismforthevascularrelaxingeffectofPterodon spp.anditsisolatedditerpene methyl-6␣-acetoxy-7␤-hydroxyvouacapan-17␤-oate.Pharmacol.Res.100,242–249.

(10)

Tamashiro,J.Y.,Foglio,M.A.,2009.FuranoditerpenesfromPterodonpubescens Benth.withselectiveinvitroanticanceractivityforprostatecellline.J.Braz. Chem.Soc.20,569–575.

Spindola,H.M.,Servat,L.,Denny,C.,Rodrigues,R.A.F.,Eberlin,M.N.,Cabral, E., Souza, I.M.O., Tamashiro, J.Y., Carvalho, J.E., Foglio, M.A., 2010. Antinoci-ceptiveeffect ofgeranylgeraniol and6␣,7␤-dihydroxyvouacapan-17␤-oate methyl ester isolated from Pterodon pubescens Benth. BMC Pharm. 10, http://dx.doi.org/10.1186/1471-2210-10-1.

Spindola,H.M.,Servat,L.,Rodrigues,R.A.F.,Sousa,I.M.O.,Carvalho,J.E.,Foglio,M.A., 2011.Geranylgeranioland6␣,7␤-dihydroxyvouacapan-17␤-oatemethylester isolatedfromPterodonpubescensBenth.:furtherinvestigationonthe antinoci-ceptivemechanismofaction.Eur.J.Pharmacol.656,45–51.

2013.ThePlantList.Version1.1.GlobalStrategyPlantConservation(acessed Decem-ber2016).

http://www.who.int/mediacentre/factsheets/fs375/en(accessed02.05.17). WHO, 2017b. WHO Leishmaniasis, Epidemiological Situation. World Health

Organization,Geneva,http://www.who.int/leishmaniasis/burden/en(accessed 01.03.17).

Zakaria,Z.A.,Sani,M.H.M.,Kadir,A.A.,Kek,T.L.,Salleh,M.Z.,2016.Antinociceptive effectofsemi-purifiedpetroleumetherpartitionofMuntingiacalaburaleaves. Rev.Bras.Farmacogn.26,408–419.

Zhang,J.L.,Chen,Z.H.,Xu,J.,Li,J.,Tan,Y.F.,Zhou,J.H.,Ye,W.X.,Tian,H.Y.,Jiang, R.W.,2015.Newstructures,chemotaxonomicsignificanceandCOX-2inhibitory activitiesofcassane-typediterpenoidsfromtheseedsofCaesalpiniaminax.RSC Adv5,76567–76574.

Referências

Documentos relacionados

The objective of this study was to evaluate the antinociceptive effect of the hydroethanol extract of Cistanche salsa (C.A.Mey.) Beck, Orobanchaceae, stolons in animal models of

Pinostrobin showed potent activity against leukemia and breast tumor cell lines and moderate cytostatic effect against ovarian cell.. Furthermore, this is the first report on

The pure compounds 1 – 4 and crude extracts were tested for their antibacterial activity against five Gram-negative and seven Gram-positive strains and for their potential

Class 0, no damage; class 1, tail of comet shorter than the diameter of nucleoid; class 2, tail of comet once or twice the diameter.. of nucleoid; class 3, tail of comet more than

laxiflora demonstrated the good combined activities (MIC 0.5 mg/ml, glucosyltransferase, IC 50 10.3 ␮ g/ml); therefore, its methanolic wood extracts were selected for

So, the aim of this work is to perform HPLC-DAD fingerprint analyses in “chapéu- de-couro” samples collected in different sites from Mato Grosso and Mato Grosso do Sul states, and

In the present study, the gene expression levels of ␤ -Catenin, K-ras and C-myc in the colon tissues of the 5-FU treated rats in the cancer group were down-regulated in compared

Both compounds (at 5, 10 and 15 mg/kg, i.p ) were assessed for their in vivo sedative and muscle relaxant activity in open field and inclined plane test, respectively.. The