• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número3

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número3"

Copied!
9
0
0

Texto

(1)

Moving Vorties Interating with Periodi Pinning

GilsonCarneiro

InstitutodeFsia

UniversidadeFederaldoRio deJaneiro

C.P.68528, 21945-970,RiodeJaneiro-RJ, Brasil

Reeivedon28February,2002

Reentresultsobtainedbytheauthorforthedynamialphasediagramsforvortiesinleanlms,

drivenbyanuniformfore,andinteratingwithperiodipinningresultingfromaolumnardefet

lattiearedisussed. Usingnumerial simulationsofasimplemodelandotheronsiderations,the

dynamialphasediagramsareobtainedasafuntionofthedrivingforemagnitudeanddiretion,

the temperature, and the vortex density. The following dynamial phases and dynamial phase

transitionsarefound. Movingvortexlattiesat lowtemperatures, withspatialorderthat anbe

ommensurateor inommensuratewith the periodi pinning, moving vortex liquids and moving

smetis. Dynamialmelting ofmovingvortexlattiesintomovingvortexliquidstakesplaeand

transverse pinning ofmovingommensuratevortex lattiesand smetisours. Itis foundthat

thedynamialphase diagramsinthe theoretiallimit ofinnite drivingforemagnitudes play a

entral roleindetermining thewhole dynamialphasediagram: eahdynamialphaseoriginates

fromaninnite-drivelimit phasewith thesame spatialsymmetry thatevolvesontinuouslyinto

nite-driveregionsof thedynamialphasediagram. It isarguedthatthis onlusionalsoapplies

foralargelassofperiodipinningpotentials.

I Introdution

A problem of urrent interest is the study of

mov-ing vorties interating with arrays of pinning

en-ters. Random arrays have reeived the most

atten-tion. However,periodi pinning arrays are also of

in-terest. One reason is that they provide examples of

dynamialphasesand phasetransitions,asubjetnot

yetfullyunderstood,wheretheoretialpreditionsan

betestedinsuperondutinglmswithartiialdefet

latties[1℄, and in Josephson juntion arrays(JJA)[2℄.

Earlierworksonthissubjetareasfollows.

Vortex dynamis issimpler when thedriving fore

magnitude is large, in whih ase the veloity of the

enter of mass (CM) of the vortex array is alsolarge,

beausethemovingvortiesaveragethepinning

poten-tial. Intheaseofmovingvortiesinteratingwith

ran-dompinningarraysthelargedrivingforelimitwasrst

onsidered by Shmid and Hauger[3℄. They suggested

that fast movingvortiesaverage outthe pinning

po-tential and, onsequently, order in atriangularlattie

at low temperatures. In experiments [4℄ and

numeri-al simulations[5℄ nearlytriangular lattiesare indeed

observed at largeCM veloity. Koshlev and Vinokur

[6℄analyzedtheeetsofrandompinningatlargeCM

veloitiesonvortexdisplaementfromthelattie

equi-librium positions. They argued that it is equivalent

to a "shaking"temperature, inversely proportional to

perature,andpreditedthat dynamialmeltingof the

movingvortexlattietakesplae whenthe CM

velo-ity is suh that theombined temperature equals the

equilibrium meltingtemperature. Reently, Giamarhi

and Le Doussal [7℄ pointed out that this piture for

thelargeCM veloitiesbehaviorbreaksdown,beause

the vortiesorder in a movingglass, rather thanin a

movingtriangularlattie. Thereasonisthat averaging

of thepinning potentialbythe fastmovingvortiesis

onlypartial. Astatirandompinningpotentialremains

atingonthevortiesintheframeofreferenemoving

withtheCM veloity(CM frame),andhasnon-trivial

onsequenes on vortex order. These authors predit

that the vortiesmovealong stati hannels, on

aver-ageparalleltothediretionofdrive,andarepinnedon

themwithrespettoatransverseforeatzero

temper-ature. Thisisreferredtoastransversepinning. These

preditionsareinagreementwithexperimentaland

nu-merialresults[4℄.

Intheaseofvortiesinteratingwithperiodi

pin-ning, it is also expeted that at large CM veloities

averageofthepinningpotentialtakesplae. However,

itsonsequenesforthedynamialphasediagramhave

onlybeenexploredreently[8,9℄. Previoustheoretial

(2)

Exten-in systems with olumnar-defet(CD) latties, arried

out by several workers [5℄, nd a rather omplex

be-havior,withmanydynamialphasesandphase

transi-tions. A simpler nite-temperature behavioris found

in JJA and lms. Maroni and Domimguez [10℄

ar-riedoutnumerialsimulationsofsquareJJA,withthe

driving fore along the[1,0℄ (or[0,1℄) diretion. They

nd three dynamial phases: two moving vortex

lat-tiesandamovingliquid. Inallthree,theCMveloity

is along the diretion of drive. The latties have the

same spatial order, but dier from eah other by the

response to a fore transverse to the diretion of

mo-tion. One lattie, named transversely pinned vortex

lattie, is pinned (transverse pinning), and the other,

named oating solid, is unpinned. Dynamial melting

of theoatingsolidinto theliquid,and dynamial

de-pinningfromthepinnedlattietotheoatingsolidare

reported. Furtherwork[11℄preditstransversepinning

onlyfordrivingforesalong[1,0℄(or[0,1℄),andverifyit

experimentally. Finite-temperaturework onlms was

arriedoutbyReihhardtandZimanyi[12℄forvorties

interating with a square CD-lattie driven along the

[1,0℄,or[0,1℄,diretions,andforthevortexdensityfor

whih there is onevortexperCD. These authors nd

three dynamial phases: amoving lattie,

ommensu-rate with the pinning potential periodiity along the

diretion transverse to motion, a moving smeti and

a moving liquid. Dynamial transitions between the

ommensuratelattieandthesmetiandbetweenthe

smeti and the liquidare found, driveneither by the

temperatureorbyvortexmotion.

Theremainingofthispaperdesribestheapproah

proposed by the author [8, 9℄ to onstrut the

nite-temperaturedynamial phase diagram forvorties

in-teratingwithaCD-lattieasafuntionofthe

magni-tudeanddiretionofthedrivingfore,thetemperature,

andthevortexdensity.

This approah starts by pointing out that in the

limit of very large CM veloities the moving vorties

averagetheperiodipinningpotentialonlyinthe

dire-tion of motion,and that thedynamial phasesredue

totheequilibriumonesforvortiesinteratingwiththe

averagedpinningpotential[8,9℄. Thenitonsidersthe

limit of very large CM veloities, referred to here as

theinnite-drivelimit,foragenerimodelforvorties

in lean lms interating with periodi pinning (Se.

II). Itisshownthatin thislimitthedynamialphases

redue, in the CM frame, to the equilibrium ones for

vortiesinteratingwiththeperiodipinningpotential

averagedin thediretionof motion. These phases,

re-ferredtohereasinnite-drivephases,stablishtheexat

asymptoti behaviorof the dynamial phases at large

values of the driving fore magnitude, for a given

di-retion of motionand temperature. The innite-drive

phases depend also on the details of the pinning

po-tentialand onthe vortexdensity. Thenextstep isto

onsider a simple model that keeps the most

impor-tant features of the problem ( Se. III). This model

desribesvortiesin lmsinterating with square

lat-tieofolumnardefets(Fig.1). Firsttheinnite-drive

limitforthemodelisonsidered.Thepinningpotential

(Fig. 2.a) averaged in the diretion of motion is

non-trivialonly forthe[0,1℄(or[1,0℄) and[-1,1℄(or[1,-1℄),

where itis a washboard periodi in the perpendiular

diretion (Fig. 2.b and). In otherdiretions itis

ei-theraonstantoraveryshallowwashboard(Fig.2.d).

The washboards for [0,1℄ (or [1,0℄) and [-1,1℄ (or

[1,-1℄)stabilize movingvortexlattiesatlowtemperature

thatanbeommensurateorinommensuratewiththe

washboard's periodiity (Fig. 3). The innite-drive

phasediagramsarethen obtainedasafuntion ofthe

diretionofmotionandtemperaturefortwotypial

vor-tex densities byequilibrium Monte Carlo simulations.

Next, numerial simulations of Langevin's stohasti

dynamialequationsforthemodelarearriedoutin

or-dertodeterminethedynamialphasediagramatnite

drives (Se. IV). The most important result obtained

fromthese simulationsisthat, asfarasthespatial

or-deris onerned, theinnite-drivephasesexhaust the

whole dynamial phase diagram. In other words, all

dynamial phases originate from innite-drive phases

with the same spatial symmetry that evolve

ontinu-ously into regions of nite drives. It is argued that,

withafewexeptions,thisisalsotrueforalargelass

ofperiodipinningpotentials(Se.V).

II Innite-drive limit

Here the innite-drive limit is disussed for a generi

model for vorties interating with a CD-lattie. By

onsideringLangevin'sstohasti dynamialequations

forthismodelinthelimitwherethedrivingfore

mag-nitudeapproahesinnity,itisshownthatthese

equa-tions,writtenintheCMframe,desribevorties

inter-ating between themselves and with a stati eetive

pinningpotential,equaltothe average oftheperiodi

pinningpotentialinthediretionofmotion. Asa

onse-quene,thedynamialphasesreduetothe

orrespond-ingthermalequilibriumones,theinnite-drivephases,

thatanbedistinguishedfrom eah other onlybythe

spatialsymmetry.

The motion of N

v

two-dimensional vorties is

as-sumedtobegovernedbyLangevinequationsfor

mass-lesspartiles,whihforthel-thvortexreads[13℄,

dr

l

dt =F

v v

l +F

v dl

l

+F

d +

l

; (1)

where isthefritionoeÆient,

F v v

l =

Nv

X

j6=l=1 r

l U

v v

(r

l r

j

); (2)

istheforeof interationwith othervorties,U v v

(r)

being the vortex-vortex interation potential in

two-dimensions,

F v dl

= r

l U

v dl

(r

l

(3)

is the fore of interation with the CD-lattie,

U v dl

(r),beingtherespetivepotential,givenby

U v dl (r)= X R U v d

(r R); (4)

whereRdenotestheCD-lattiepositionsandU v d

(r)

istheinterationpotentialbetweenavortexanda

sin-gle CD, F

d

is the driving fore, and

l

is the

ran-dom foreappropriate fortemperature T. Intermsof

FouriertransformsU v dl

l

anbewrittenas

U v dl (r)= X Q U v d (Q)e iQr ; (5)

where Q denotes the CD-lattie reiproal lattie

vetors, and U v d

(Q) is the Fourier transform of

U v d

(r).

It is onvenient to onsider vortex motion in the

frame movingwith theCM. Let r 0

l (t) =r

l

(t) V

m t

denotethe l-th vortexpositionin theCM frame,V

m

beingtheCMveloity,tobedenedshortly. IntheCM

frame the vortex-CD lattieinteration, denoted here

byF v dl

l

(t), dependsexpliitlyontime,namely

F v dl l (t)= X Q ( iQ)U v d (Q)e iQr 0 l e iQVmt ; (6)

Theequation of motionfor thel-thvortexin the CM

framereads, dr 0 l dt =F v v l +F v dl l

(t)+F

d V m + l ; (7)

The CM veloity is dened by the ondition

P N v 1 hdr 0 l (t)=dt)i t

=0, wherehi

t

denotesaverageover

therandomforedistributionandovertime. Itfollows

fromEq.(7) that

V m =F d + 1 N v Nv X j=1 hF v dl l (t)i t : (8)

InthelimitF

d

!1,itfollowsfromEqs.(6)and(8)

thatV

m =F

d

=,sothat V

m

!1also. Inthisase,

allFourieromponentsinF v dl

l

(t),Eq.(6),forwhih

QV

m

6= 0 osillate fast, having a negligible eet

on the vortex trajetory [3℄, and F v dl

l

(t) redues to

thestatiforeobtainedbysummingtheFourier

om-ponents in F (v dl)

l

(t) with QV

m

=0, orQ ?F

d , namely F v dl l (t)! X Q?F d ( iQ)U v d (Q)e iQr 0 l (9)

Thisfore derivesfrom thestatieetivepinning

po-tential U eff (r 0 ? )= X Q?F U (v d) (Q)e iQr 0 ? ; (10) wherer 0 ?

istheCMframeoordinateperpendiularto

thediretion of F

d

, andthe orientationofF

d . This

potentialisequaltotheaverageofU v dl

inthe

dire-tionof motion(anddrive). Bydenition,U eff (r 0 ? )is

one-dimensional and periodi in thediretion

perpen-diularto F

d , ifF

d

isorientedalongoneofthesquare

CD-lattie diretions and a onstant otherwise, sine

no Q is perpendiular to F

d

. The equations of

mo-tion in the CM frame, Eqs. (7), redue then to those

desribingvortiesinteratingbetweenthemselvesand

withU eff (r 0 ?

)attemperatureT. Theirlong-time

solu-tions are theorresponding equilibrium phases, alled

innite-drivephasesinthispaper.

Theinnite-drivelimitestablishestheexat

asymp-totibehaviorF

d

!1ofthedynamialphaseforgiven

F

d

orientation and T. For nite F

d

, the dynamial

phase is expeted to be lose to the innite-drive one

with the same spatial symmetry for suÆiently large

F

d

. Theonditionforthistohappenisthatthevortex

displaementsin theCM frameaused bythepinning

fore osillationsin time,Eq. (7), during atime

inter-valoftheorderofone-halfperiod,aresmallompared

with thevortexmeanseparationa

v

. This meansthat

foreveryQ,suhthat QF

d 6=0,

QjU (v d)

(Q)j

QF

d a

v

: (11)

III Model and numeris

Hereasimplemodelthatallowsexpliitresultsforthe

thedynamialphasediagramstobeobtainedis

onsid-ered[8℄. Themodel onsiders vortiesand CD plaed

on a square lattie (spae lattie), subjeted to

peri-odiboundaryonditionswith 256256square

prim-itiveunit ellsof dimensions dd. The CD-lattieis

square, orientedparallel tospae lattieand

ommen-surate withit. TheCD-lattie, the oordinate system

and theanglesdening theorientationsof F

d

()and

V

m

()areshownin Fig. 1.

x

y

F

d

V

cm

Figure 1. Columnar defet-lattieand denitions of

oor-dinatesystem,CMveloity (V

m

)anddrivingfore(F

d )

orientations.

vortex has a ore of linear dimension d

v

= 4d (d

v

2(0)), so that eah vortex oupies 16 spae-lattie

(4)

sreened Coulomb one [14℄, periodi in the spae

lattie, and haraterized by the energy sale J =

( 2 0 d v =32 3 2

),whereisthepenetrationdepth. That

is, U v v

(r)isthelattieFouriertransformof

U v v

(k)=4 2 J e 2 2 2 + 2 ; where 2

= 4sin 2

(k

x

d=2)+4sin 2 (k y d=2), k x and k y

being the spae lattie reiproal lattie vetors

om-ponents,

= 2sin(d=2d

v

) is the vortex ore uto

in k-spae, and is the sreening length ( > ).

The square CD-lattie has N

d

= 88 sites, lattie

onstant a

d

= 32d. The interation potential

be-tween avortex and a singleCD is hosen with depth

U v d

(r = 0) = J, range R

d

= 12d and a spatial

dependenethatgivessquareequipotentialsanda

pin-ning fore ofonstantmodulusF

p =J=R

d

, asshown

in Fig.2.a. Thereiproal CD-lattievetorsare

Q=Q

1 (n

1 ^ x+n

2 ^ y); where Q 1 =2=a d , and n

1 ;n

2

= 4; 3;:::;3. It is

foundthatthelattieFouriertransformsU v d

(Q)are:

U v d

(0)= 0:19J,U v d

(Q

1 ^

x)=U v d

(Q

1 ^

y )=

0:10J,U v d

(Q

1

[^xy ℄)^ = 0:06,andessentially

neg-ligibleotherwise.

Themodelhasthesquarelattiesymmetry,sothat

thedynamialphasediagramsneedonlyto bestudied

forF d orientations0 o 45 o .

Thedynamial phasesspatial order is obtainedby

alulating the time-averaged density-density

orrela-tionfuntion,P(r),whih isproportionalto the

prob-ability that avortexis foundat r, giventhat thereis

oneat r=0,and its Fouriertransform, thestruture

funtion,S(k). Themotionofvortiesisharaterized

byalulatingtheCM veloity,and thetime-averaged

veloityofeahvortex.

Two types of numerial studies of the model are

arried out. Equilibrium Monte Carlo simulations to

obtain the innite-drive phases, desribed in detailin

Se. IV A. Numerial integration of Langevin's

equa-tionstoobtainthedynamialphasediagramasa

fun-tionofF

d

,andT fortwotypialvortexdensities: two

vorties per CD and ve vortiesperfour CD. These

orrespondsto the magnetiindutions B =2B

and

B = 1:25B

, respetively, where B

= 0 =a 2 d is the

mathing eld, for whih there is one vortex perCD.

The tehnialdetails of these simulations aregivenin

Refs. [8,9℄.

IV Results

Inthissetionthesimulationresultsforthedynamial

phasediagramsarereported. Firstintheinnite-drive

limit,thenfornitedrives. Inthegurespresentedhere

driving fore magnitudesare measured relative to the

singleCD pinningfore F

p

, Se.III;temperatures

rel-ativeto theinnite-drivemoving inommensurate

lat-tie meltingtemperatureT

m

, Se. IVA and enter of

mass veloity omponents relative to the omponents

ofV

d F

d =.

A.Innite-Drive Limit

The innite-drive phasediagrams are obtained by

equilibriumMonteCarlosimulationsofthelattie

Lon-don model with the pinning potential U eff

(r

? ). It

is found that for F

d

along [0,1℄ ( = 0 o

) and [-1,1℄

( =45 o

) the U eff

(r

?

)are the washboards shownin

Figs.2b)and). ForF

d

alongotherlattiediretions,

theU eff

(r

?

)arefoundtobeveryshallowwashboards,

beausetheU (v d)

(Q) (Eq.(10))areverysmall(Se.

III), and are onsidered as onstant potentialsin this

paper. Forexample, theU eff

(r

? ) forF

d

alongthe

[-1,2℄diretion(=26:6 o

),shownin Fig.2.dhasawell

depthmorethan oneorder ofmagnitude smallerthan

that for = 0 o

and 45 o

shown in Figs. 2b) and ).

ForF

d

orientedinnon-lattiediretions,U eff

(r

? )isa

onstant.

a)

b)

d)

c)

U

v-cdl

U

eff

o

U

eff

o

U

eff

o

Figure2. a)Columnardefet-lattiepinningpotential.b-d)

Eetivepinningpotentialsformotionin: b)[0,1℄diretion

(=0 o

),)[-1,1℄diretion(=45 o

),andd)[-1,2℄diretion

(=26:6 o

). PotentialsinunitsofthesingleCDpotential

welldepth(J).

The orresponding low-T innite-drive phases are as

follows. For = 0 o

and 45 o

, they are vortex

lat-ties(VL) ommensurateorinommensuratewiththe

one-dimensionalperiodiity, depending onB. TheVL

for = 0 o

, are obtained here as a funtion of B, for

B B

. Their density-density orrelation funtions,

P(r), areshown in Fig.4. Theommensuratelatties

onsistofidentialvortexhainswithineahwashboard

hannel,withneighborhainsdisplaedwithrespetto

eahotherbyhalfahainperiod. Thereisasinglehain

forB

B B

1

, and twohains forB

1

<B B

2 .

(5)

B

1

< 1:125B

and 1:125B

< B

2

< 1:375B

. A

ommensurate-inommensurate transition takes plae

for B = B

i

(1:25B

< B

i

< 1:375B

). For

B>B

i

theVLisinommensurate,andnearly

trian-gular. For B =2B

andB =1:25B

theP(r)shown

in Fig. 4 orrespond, respetively, to thevortex

lat-ties labeled MIL and MCL0 in Fig. 3. Theeet of

the one-dimensional periodi potential on the

inom-mensurate lattie is to displae the vorties from the

triangular lattie positions by a distane small

om-paredtothelattieparameter[15℄. It isfoundthat, as

expeted, this eet isgreater forB in the viinityof

B

i

. ThisisevidenedbythebehaviorofP(r)shown

in Fig.4. ForB =1:375B

,1:5B

, and1:75B

, P(r)

hassmeared spotsenteredinanearlytriangulargrid,

withsmearinginreasingwithdistane. ForB>2B

,

P(r)hassharpspots,indiatingthatthedisplaements

arenegligible,andtheVLissharplydened.

B=2B

=45

o

B=2B

=0

o

B=1.25B

=45

o

B=1.25B

=0

o

a) MCL0

d) MCL

c) MIL

b) MCL45

Figure 3. Vortex positions in low-T innite-drive phases.

DashedgraylinesindiateminimaofU eff

showninFigs.2.b

and2.. Nomenlature: movingommensuratelatties: a)

MCL0, b) MCL45 and d) MCL. Moving inommensurate

latties: )MIL

The twoB values studied in this paper,B =2B

and B =1:25B

, are typialof parameter regionsfar

from ommensurate-inommensuratetransitions, both

for=0 o

and=45 o

, wheretheVLaresharply

de-ned. Theinnite-drivephasediagramsin these ases

are asfollows. For=0 o

and 45 o

the VLare shown

in Fig.3. These are referredto in this paper as

mov-ing inommensurate latties (MIL) and moving

om-mensuratelatties, withdistint vortex ongurations

labeled MCL,MCL0 and MCL45, as shownin Fig. 3.

For 0 o

< < 45 o

, the VL are inommensurate and

nearlytriangular. Itisfoundthattheinommensurate

tinguishedfromeahother. Hereafterall

inommensu-ratelattiesarereferredtoasmovinginommensurate

latties(MIL).

F

d

B=1.125 B

f

B=1.25 B

f

B=1.375 B

f

B=1.5B

f

B=1.75 B

f

B=2 B

f

Figure4. Density-densityorrelationfuntions,P(r)(r=0

is atthepanel'senter),for low-T innite-drivephases for

motioninthe[0,1℄(=0 o

)diretionasafuntionofB.

The T-dependene of the innite-drive phases (at

onstantisfoundtobeasfollows: themoving

inom-mensurate latties (MIL) melts into a moving vortex

liquid (MLQ)at k

B T

m

=0:09J,for bothB. ForB =

2B

themovingommensuratelattie(MCL) hanges

intoamovingsmeti(MSM)atT

ml =T

m

=1:4andthe

moving smeti (MSM) hanges into a moving liquid

(MLQ) at T

msm =T

m

=1:8. For B =1:25B

the

mov-ingommensuratelatties,MCL0andMCL45,hange

into amovingsmeti (MSM) at T

ml0 =T

m

=1:2 and

T

ml45 =T

m

=1:7,respetively.

1. Drivealong =0 o

and =45 o

Dynamial phase diagrams (F

d

vs. T) are shown

in Fig. 5. For B = 2B

, =0 o

, onlytwodynamial

phases exist: amovinginommensurate lattie(MIL)

andamovingliquid(MLQ),separatedbyadynamial

meltingline, asshowninFig.5. Thedynamialphase

diagramsforbothB,=45 o

,andforB=1:25B

,=

0 o

,aresimilartooneanother,ontainingthreephases:

a moving ommensurate lattie (MCL for B = 2B

,

MCL0 andMCL45forB =1:25B

)amovingsmeti

(MSM)andamovingliquid. Onlythedynamialphase

diagrams for B = 2B

, = 45 o

, and B = 1:25B

,

= 0 o

are shown in Fig. 5. That for B = 1:25B

,

=45 o

, is similar. Inthe temperaturerange overed

(6)

P(r) at large F

d =F

p

for the above desribed phases

are shown. It is found that the dynamial phases at

large F

d =F

p

essentially oinide with the

orrespond-ing innite-driveones. Thedynamialphasediagrams

in Fig.5showlearlythateahdynamialphase

origi-nates fromtheinnite-driveonewiththesamespatial

symmetrythatevolvesontinuouslyintonitedrive

re-gions.

As disussed next, the ommensurate VL (MCL,

MCL0 and MCL45) show transverse pinning at low

T. This may be expeted beause for = 0 o

and

= 45 o

, V

m

remains parallel to F

d

. In all these

ases, aording to Eq. (6), the eetive pinning

po-tential(U eff

(r

?

)) ats on the moving vorties for all

F

d

,notonlyin theF

d

!1limit. Theommensurate

phasesarepinnedbyU eff

(r

?

)withrespettoasmall

fore alongthediretiondened byr

? .

0.0

0.5

1.0

0.0

0.5

1.0

1.5

0.0

2.0

4.0

0.5

1.0

MIL

MLQ

T/

T

m

MSM

MCL

T/

T

m

B=2B

=45

o

B=2B

=0

o

B=1.25B

=0

o

F

d

/ F

p

MSM

MCL0

T/

T

m

Figure 5. Dynamialphasediagramsfor drivesalong[0,1℄

( = 0 o

) and [-1,1℄ ( = 45 o

). Panels: density-density

orrelation funtions P(r) at high drives (r = 0 is at

the panel's enter). Nomenlature: MLQ=moving liquid,

MSM=moving smeti. Others as in Fig.3. Dotted lines

in thepannels for B =2B indiatewhere vortexmotion

stops.

2. Drives along 0 o

<<45 o

Thedynamialphases

found in this range of driving-fore orientations have

thesamespatialsymmetriesasthosedesribedinSes.

IV Aand IVA 1. andare referredto in whatfollows

bythesamenomenlature.

The F

d

vs. dynamial phase diagrams at low-T

are shown in Fig. 6. Both have two dynamial

tran-sitionlines. One, referred to hereas dynamial

melt-ing line, separating a moving inommensurate lattie

(MIL)andamovingliquid(MLQ).Anotherseparating

amovingommensuratelattie(MCLforB=2B

and

MCL45for B = 1:25B

) oramovingsmeti (MSM)

for B = 2B

and a moving liquid. Within the

mov-ing ommensurate lattie and moving smeti regions

transverse pinning ours, with the vorties moving

along the [-1,1℄ diretion. The transition line in the

B = 2B

dynamial phase diagram from the moving

ommensurate lattie(MCL) and the moving smeti

(MSM)ourswiththevortiesmovinginthe[-1,1℄

di-retion,andisessentiallyidentialtothatfor=45 o

disussedinSe.IVA 1.

Theevideneleadingtotheonstrutionofthe

dy-namialphasediagramsin Fig.6isdisussed indetail

inRefs.[8,9℄

1.0

3.0

5.0

0

15

30

45

MSM

a) B=2B

φ

T/T

m

=0.83

MIL

MLQ

MCL

α

o

F

d

/ F

p

1.0

3.0

5.0

0

15

30

45

MSM

MLQ

MCL0

b) B=1.25B

φ

T/T

m

=0.89

MIL

MLQ

MCL45

α

o

F

d

/ F

p

Figure6.DynamialphasediagramsforT =onstant.

Dy-namialphasesnamedasinFigs. 3and4.

Thedetailed propertiesof thedynamialphase

di-agramsshowninFig.6areasfollows.

i)DynamialMelting:Thedynamialmeltinglines

ex-tendfrom=0 o

to =45 o

. ForB =2B

ittouhes

the = 0 o

-axisat the F

d

value where the dynamial

meltingtakesplaefor =0 o

andT=T

m

=0:83(Fig.

5). It doesnottouhthe=45 o

axisforbothB and

the= 0 o

axisfor B = 1:25B

, beause the

dynam-ialphases in theseaxes arenotmoving

inommensu-rate latties, as disussed in Se. IV A. These result

of (Fig. 6) showthat, for bothB, themoving

inom-mensurateandommensuratelattiesareseparatedby

a moving liquid, at least up to the highest F

d

stud-iedhere. However,in theinnite-drivephase diagram

there isno movingliquid at these temperatures. It is

unlearhowthedisappearaneofthemovingliquidas

F

d

!1takesplae.

The vs. F

d

urves in Figs. 7 and 8 show that

in the moving inommensurate lattie (MIL) the

di-retionsofdriveandvortexmotionareapproximately

equal ( ' ), and that the melting transition is

(7)

thishange issharp,withinreasingrapidlytowards

=45 o

asF

d

dereases. ForB =1:25B

thesameis

true,aslongas&20 o

,whileforsmallerthemoving

liquidslowlyapproahes=0 o

asF

d

dereases.

ii)TransversePinning. TheresultsshowninFigs.

7and 8 indiate that in the regionswhere the spatial

order is that of a moving ommensurate lattie, or a

moving smeti for B = 2B

, transverse pinning

o-urs, and vortex motion is restrited to the [-1,1℄

di-retion. This is seenin Figs. 7and 8, where V

? = 0

and =45 o

in theF

d

rangeofmovingommensurate

lattiesorsmetis, andthe distributionof individual

vortiesdiretion of motion is sharply peakedaround

=45 o

(Fig.7,inset). Theseresultsalsoshowthatthe

movingommensurateand smetiregionsevolve

on-tinuouslyfromtheorrespondinginnite-drivephases.

The temperature dependene of the dynamial

phase diagrams is as follows. For temperatures lower

thanthoseofFig.6thedynamialphasediagramsare

similar. The dynamial melting lines are shifted to

lowerF

d

, similarly to what happens forB =2B

and

=0 o

(Fig.5). Transversepinninginthemoving

om-mensuratelattiesalsoours,asevidenedbytheV

?

vs. F

d

urvesshowninFig.9. Forhighertemperatures

several hanges are observed. The dynamial melting

lines also exist, shifted to larger F

d

, provided T does

not exeedthe innite-drive melting temperature T

m .

WhenT >T

m

themovinginommensuratelattiesdo

notexist,onlymovingliquids.

0

2

4

6

10

20

30

40

50

0

2

4

0.0

0.4

0.8

44.5 45.0 45.5

0

20

40

60

80

B=2B

φ

T / T

m

=0.83

θ

o

F

d

/F

p

θ

α

=35

o

α

=35

o

α

=22.5

o

α

=15

o

α

=10

o

V

]

/ V

d

]

F

d

/ F

p

Figure7.Centerofmassveloitydiretion()and

ompo-nent perpendiular tothe[-1,1℄ diretion,V

?

,vs. driving

foremagnitudealonglinesofonstantinFig.5.a. Inset:

histogramforthedistributionofvortiesdiretionofmotion

()for=35 o

andFd=Fp=1:5.

ommensurate lattiesorsmetis only exists,stritly

speaking, at T = 0. At nite T thermalexitation of

lattiedefets leadto uxmotionawayfromthe[-1,1℄

diretion, giving rise to a nite V

?

. The regions of

transversepinningfoundinthepresentsimulations

o-urbeausethethermallyexitedV

?

issmallerthanthe

simulationresolution. Inexperiments, wherethe

reso-lution isalso nite,these regionsmayalsobepresent.

The T dependene of the V

? vs F

d

urves are shown

in Fig.9. ForB =2B

transverse pinningis foundin

themovingommensuratelattieandmovingsmetis

at temperaturesaboveT

m

, whereasforB =1:25B

it

disappearsatlowertemperatures.

0

2

4

6

0.0

0.4

0.8

0

2

4

6

0

10

20

30

40

v

]

/ v

d

]

F

d

/ F

p

α

=42.5

o

α

=40

o

α

=22.5

o

B=1.25B

φ

T/T

m

=0.89

θ

o

F

d

/F

p

α

=40

o

α

=42.5

o

α

=22.5

o

α

=5

o

α

=39

o

Figure8. Centerofmassveloitydiretion()and

ompo-nent perpendiular to the [-1,1℄diretion ,V?, vs. driving

foremagnitudealonglinesofonstantinFig.5.b.

V Disussion

The resultsdesribedabove reveal the importantrole

playedbytheinnite-drivephases. Theyshowthat all

dynamial phases originate from innite-drive phases

with the same spatial symmetry that evolve

ontinu-ouslyintoregionsofnitedrives.

TheresultsobtainedbyReihhardtandZimanyi[12℄

for vorties in lms interating with a square

CD-lattie,driveninthe[1,0℄diretion,atB=B

,showa

similarbehavior. Theinnite-drivephasediagramwas

notonsideredinthispaper,butanbeidentiedwith

thereporteddynamialphasediagramsat highdrives.

(8)

fol-T, with single-hain struture similar to that shown

in Fig. 4 for B = 1:125B

rotated by 90 o

, a moving

smetiatintermediateT,andamovingliquidathigh

T. Thedynamial phasediagram reported in Ref.[12℄

shows that these three phases exist in ontinuous

re-gions of the driving fore vs. T phase diagrams that

extendfrom hightolowdrives. Thisphasediagramis

similartothosefoundhereforB =1:25B

,=0

o

and

45 o

,andforB=2B

=45

o

(Se. IVA1).

0

2

4

0.0

0.5

1.0

B=1.25B

φ

α

=40

o

V

]

/ V

d

]

F

d

/ F

p

T / T

m

=0.56

T / T

m

=0.89

T / T

m

=1.1

T / T

m

=1.4

0

2

4

0.0

0.5

1.0

α

=22.5

o

α

=35

0

B=2B

φ

V

]

/ V

d

]

F

d

/ F

p

T / T

m

=0.56

T / T

m

=0.83

T / T

m

=1.1

T / T

m

=0.83

T / T

m

=1.1

Figure 9. Component of CM veloity perpendiular to

[-1,1℄,V?,vs. drivingforemagnitudealonglinesofonstant

andatonstanttemperatures.

For vorties in JJA, driven in the [1,0℄diretion, the

dynamial phase diagram reported by Maroni and

Dominguez[10℄ alsoshowdynamial phasesexisting in

ontinuousregionsofthedrivingforevs. T planethat

extendfrom hightolowdrives. Howeverit isnot

pos-sibleto identifytheinnite-drivephasesfromthedata

reportedinthepaper.

Some studies of vorties interating with

CD-latties at T =0[5℄ nddynamial phasesand phase

transitions similar to the ones desribes here and in

Ref.[12℄. Examplesaretranversepinning,moving

om-mensurate and inommensurate latties and

dynami-al transitions between them. However, these

stud-iesprobedynamialbehaviordierent fromthe

nite-temperature ones disussed here. At nite

tempera-asteady state,identiedasthedynamialphase,that

is uniqueasfar asthe probabilitydistribution is

on-erned [16℄. Aordingly, dynamial phase hanges

aused by varying the driving fore, thetemperature,

orboth,arereversible. Thisisnotneessarilythease

atT =0. However,innumerialstudies,irreversibility

appearsduetoinsuÆientruntimestoreahthesteady

state,partiularlywhenrelaxationtimesareverylarge.

Thisoursin severalirumstanes,suhas low

tem-peratures, or viinity of dynamial phase hanges. In

thesimulationsreportedinthispaperlowtemperatures

areavoided. Somesimulationrunswhereperformed

y-lingthedrivingforemagnitudefromalargevalueto

asmall oneand bak. Small hysteresis is found near

dynamialphasetransitions.

In onlusion, the approah desried here to

on-strutthedynamialphasediagrams,startingfromthe

innite-driveones,providesasimplemethod, basedon

equilibriumstatistialmehanis,toidentifydynamial

phases spatial order, and to predit dynamial phase

transitions. Itisexpetedthatthis methodis

applia-ble to alarge lass of periodi pinning potentials and

vortexdensities. Thereasonsarethattheeetive

pin-ningpotentialsresultingfromaveragingphysially

rea-sonable periodi pinning potentials in the diretion of

motionare,asthosedisussedinSe.IVA,essentially

onstantformostdiretions, and one-dimensionaland

periodiforafewpartiularones. Thispreditsthe

ex-istene,forB B

,ofmovinglatties,ommensurate

orinommensuratewiththeeetivepinningpotential

periodiity, moving smetisand moving liquids,

simi-larto theones reported here,and of dynamialphase

transitionsbetweenthen. For B <B

themoving

lat-tiesmaybedierent,partiularlyatlowvortex

densi-ties,wheretheommensurate innite-drivephasesare

notexpetedtoretainthesimplehainstruturefound

here for the B B

ones. However, the lose

rela-tionship between the dynamial phase diagrams and

the innite-drive ones are still valid, as evidened by

theJJAresultsofRef.[10℄. Thedynamialphases

ob-tainedbythis method do not,in general, exhaust the

dynamialphasediagram. Oneknowntypeof

dynami-alphasethathasnoorrespondinginnite-drivephase

isthat in whih somevortiesare pinned by the

peri-odi potentialandothersaremoving. Thesearefound

at low drives in some T = 0 simulationsfor B >B

[5℄. Nosuhphasesarefoundinthepresentsimulations

norin Refs.[5, 10℄. Thedetails of how the dynamial

phases and dynamial phase transitions predited by

themethodproposedheretintothedynamialphase

diagram for eah partiular model and vortexdensity

dependsinaompliatedwayonthemodelparameters,

andhasto bedeterminedineahase.

Aknowledgments

(9)

Referenes

[1℄ A.N.Lykov,Adv.Phys.42,263(1993)V.V.Metlushko

etal.,Sol. St.Comm.91,331(1994);M.Baert etal.,

Phys.Rev.Lett.74,3269(1995);E.Rosseletal.,Phys.

Rev.B53,R2983(1996);V.V.Moshhalkovetal.,ibid.

54,7385(1996);57,3615(1998);K.Haradaetal.,

Si-ene274, 1167 (1996).J.-Y. Linet al.,Phys.Rev.B

54,R12717 (1996).L. VanLooketal.,ibid. 60,6998

(1999).B.Y.Zhuetal,ibid.64,012504(2001)

[2℄ R.S.Newroketal.,SolidStatePhys.54,263(2000).

[3℄ A. Shmid and W. Hauger, J. Low Temp. Phys. 11,

667(1973)

[4℄ R. Thorel et al., J. Phys. (Paris) 34, 447 (1973); S.

Bhattaharyaand M.J. Higgins,Phys.Rev.Lett. 70,

2617 (1993); U. Yaron et al., Phys. Rev. Lett.73,

2748(1994); Nature (London) 376,753 (1995); A.

Duarteetal.,Phys.Rev.B53,11336(1996).F.Pardo

etal.,Phys.Rev.Lett.78,4633(1997);M.Marhevsky

etal.,ibid78,531(1997).

[5℄ C.Reihhardt etal., Phys.Rev.B54, 16108 (1996);

ibid.57,7937(1998);ibid.58,6534(1998);Phys.Rev.

Lett.782648(1997);ibid.82414(1999);H.Fangohr,

S.J.Cox,andP.A.J.deGroot,Phys.Rev.B63,064501

(2001);ibid64,064505(2001).

[6℄ A.E.KoshelevandV.MVinokur,Phys.Rev.Lett.73,

3580(1994).

[7℄ T.GiamarhiandP.LeDoussal,Phys.Rev.Lett.76,

3408 (1996); PhysiaC 282,363(1997); Phys.Rev. B

57,11356(1998).

[8℄ G. Carneiro, J. Low Temp. Phys.117, 1323 (1999);

Phys.Rev.B61,R14661(2000).

[9℄ G.Carneiro,ond-mat/0205461

[10℄ V.I.MaroniandD.Dominguez,Phys.Rev.Lett. 82,

4922(1999);Phys.RevB63,174509(2001).

[11℄ V.I.Maronietal.,Phys.Rev.B62,4096(2000).

[12℄ C. Reihhardt and G.T. Zimanyi, Phys. Rev. B 61,

14354(2000).

[13℄ E.H.Brandt,Rep.Prog.Phys.58,1465 (1995).

[14℄ P.Minnhagen,Rev.Mod.Phys.59,1001(1987)

[15℄ See eg. D.R. Nelson, Phase transitions and Critial

Phenomena, Vol. 7, C. Domb and M.S. Green, eds.

(AademiPress,1983),Chap.1.

[16℄ Seeeg.H.Risken,The Fokker-PlankEquation.

Meth-ods of Solution and Appliations. (Springer,1989),

Imagem

Figure 1. Columnar defet-lattie and denitions of oor-
Figure 2. a) Columnar defet-lattie pinning potential. b-d)
Figure 3. Vortex positions in low-T innite-drive phases.
Figure 5. Dynamial phase diagrams for drives along [0,1℄
+3

Referências

Documentos relacionados

sample lets magneti ux to enter the sample, following. a

formation of single phase Pr123 with larger lattie pa-. rameter

provided lear evidene of a pair-breaking eld at the Ni site for non-superonduting ompounds.. This eld is not present in the superonduting ollinear AF DyNi2B2 C, however it

powder diratometry, sanning eletron mirosopy and d-magnetization.. Samples

most of the reported results have been obtained using aligned rystallites, -axis oriented thin lms.. and

Room temperature and 4.2 K M ossbauer spetra of the samples MgC(Ni1 xFex)3 with x = 0:01 and x = 0:5. Band struture alulations

YBCO blok in 1-D and mapping the trapped magneti eld in those bloks in 2-DC. I In

is proportional to the average grain-domain radius, but inverse proportional to the total length of.. grain-boundaries of the sample, a simple physial model has been provided and