• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
8
0
0

Texto

(1)

Changes in Aggregate Form, Size and Flexibility Along

Phase Sequenes in Lyotropi Liquid Crystals

Lia Queirozdo Amaral

InstitutodeFsiadaUniversidadedeS~aoPaulo,

C.P.66318,S~aoPaulo,SP,05315-970, Brazil

Reeivedon14November,2001

Aomparisonismadebetweenexistingtheoriesforself-assemblingsystemsandexperimentalphase

diagrams of omplexsystems made up of amphiphile/water/additives, with emphasis on phase

transitions by hangesinonentration. Evidenefor dierent typesofhexagonal (H) phases,in

systemswithdetergentandlipidamphiphiles,arereviewed. ItisshownthatharateristisoftheH

phaseandofthephasesequene(ubiphaseswithlipidsandnematiphaseswithdetergents)are

revealedthroughtheexponentdeningthevariationofthehexagonalparameterwithamphiphile

onentration. Emphasisis also givento results obtained in the ternary system sodium dodeyl

(lauryl) sulfate / water /deanol, whihexhibits the phase sequeneisotropi (I) -H -nemati

ylindrial(N){[nematibiaxial (Nb)℄-nematidisoti (Nd)-lamellar(L), witho-surfatant

addition. Existingtheoriesfor self-assemblingsystemsofrigidandexiblerodspredit thephase

sequeneI -(N

) -H as afuntion of inreased partile volume fration

p

, with atriple point

separatingI-HandI-N -Hphasesequenes. Possiblereasonsforthe non-trivialexperimental

I-H -N

inversioninphasesequeneare disussed. A omplexpaththroughthe phasediagram

is able to explain the experimental results interms of hanges inmiellar growth and exibility

induedbytheo-surfatant. Theroleofthesurfatantparameter,thatexpressestheurvatureof

thepolar-apolarinterfaes,explainsmuhoftheobservedbehavior,inludingtheN{Ndtransition

withinreaseindeanol/amphiphilemolarratio.

I Introdution

The omplex polymorsm of systems made of

am-phiphile / water / additives (salt and / or alohol)

hasbeenextensivelyinvestigatedoverthelastdeades

[1,2℄. Suh polymorsm existsbeausetheamphiphile

moleules in solution self-assembly into aggregates of

dierentformsandsymmetries,duetothetendenyof

spontaneousformationofinterfaesbetweenpolarand

apolargroups. Theformationoftheaggregatesis

on-trolledbythesurfatantparameter[3℄p

o

=v=al,with

v,aandl,being,respetively,thevolumeofthehain,

the polar head area at the interfae (whih depends

also on theamount of bound water) and theeetive

lengthofthehain. Moleuleswith p

o

=1/3,1/2and

1havetendenyto form,respetively,spherial,

ylin-drialandplanarmielles. Inamphiphileswithasingle

hydroarbonhain (as detergents,with p

o

1/3) the

interfaes may be losed and highly urved, with

for-mationofmielles (diretin thewaterrih sideofthe

phasediagram,invertedinthewaterpoorside)and

sep-arationofhydroarbonandwatermoieties. Miellesof

initially spheroidalshape (whenformed at theritial

miellaronentration) may growto ylindrial forms

quent derease in p

o

due to derease of bound water.

Lamellarphases with planarinterfaes oromplex

bi-ontinuous phases, with minimal urvature interfaes,

may also our in the intermediate zone of the phase

diagram. Amphiphiles with two hydroarbon hains

(as phospholipids, with p

o

1), instead, have

ten-deny offorming vesiles(losed membraneswith

wa-terinsideandoutside)duetotheirdiÆultyinforming

highly urved interfaes. Suh supra-moleular

aggre-gates mayhaveornot longdistane order,givingrise

toisotropiandliquid-rystallinephases,before

reah-ing rystalline phases. Changes in the miellarshape

and in the separatinginterfaes aompany or trigger

thephasetransitionsasafuntionofonentrationand

temperature.

We shall here onentrate on amphiphiles with a

single arbon hain, and onphase transitions indued

by hanges in onentration. The typial phase

se-quene with inreasing amphiphile onentration is I

(isotropi) - H (hexagonal) - L (lamellar).

Interme-diate phases between H and L, with long-range

posi-tional order, may our in binary systems.

(2)

I-Q-H sequenes)or of biontinuous arrays(in H-Q-L

sequenes). Ternary systems, with addition of a long

hainalohol,mayleadinsteadtonemati(N)domains

betweenHandLphases(ordiretlyfromIphase),with

uniaxial[5-7℄(ylindrialN

anddisotiN

d

)and

biax-ial[8℄(N

b

)phaseshavingonlylong-rangeorientational

order. Therole ofaloholin hangingtheaggregation

proess,leadingtoislandsofnematiphasesinternary

phase diagrams,ishere disussed. The harateristis

ofHphasesseemalsotodependonthepartiularphase

sequene where it appears. In this paper we shall

re-view thework we havemade on suh phases overthe

last deade,withseveralollaborators.

SinethedisoveryofHphases,theirstruturehas

beenproposed[1℄toonsistof\innite"ylindrial

mi-elles with a two-dimensional positional order in the

planeperpendiularto theylinderaxes,basedonthe

fatthatonly(hk0)dirationswereobserved,without

dened values for the parameter, together with the

indiationofverylongmiellesbyothertehniques,as

NMR. Duringthelastdeade, however,wehave

gath-ered evideneshowingthat in fat dierent strutures

exist, whih seem to orrelate with the spei phase

sequene. Information on suh strutures is given by

theexponentofthevariationof thehexagonal

param-eter with onentration. Results obtained [9-13℄ with

detergentandlipidamphiphiles areherereviewed.

Wefousalsointhispaperontheanalysisofresults

obtained[14-17℄inthesystemsodiumdodeyl(lauryl)

sulfate(SLS)/water/deanol(whihisagood

exam-ple [18-20℄ofdetergentbehavior). Thephasesequene

I-H-N

{(N

b )-N

d

-L,obtainedwithinreaseinthe

deanol /amphiphilemolarratio (M

d

),is analyzedin

partiular. The resultsare onfrontedwith statistial

mehanialtheories[21-23℄ofself-assemblythatpredit

insteadthephasesequenesI-N

-HorI-N

d

-L,

de-pending onthe symmetryof theaggregates(ylinders

ordiss,respetively). Weonsideralsoareentresult

[24℄obtainedthroughanapproahbasedonbending

en-ergyonsiderations,whih isabletoaountforshape

transformationsattheN

-N

d

transition,withinrease

ofdeanolontentinsystemswith mixedmielles.

II Oupany of the hexagonal

ell

Asanalyzedinourpreviouspapers[9,11-13℄,fora

sphe-roylinder (SC) of radius R and total length L in an

hexagonalellwithparametersaand,theusual

on-dition of equal densityat the mirosopi and

maro-sopilevelsimpliesthatthestatistruture(averaged

in time)satisestherelation

(L=)

SC =(2

p

3=)

v (a=2R )

2

()=( 1=3); (1)

one for spheres) and

v

is the volume fration of the

totalamphiphile moiety. Note that in the aseof

mi-ellestheexisteneofboundwatermaymake

v

dier-entthan thepartile volume fration

p

. For longSC

theylinder (or rod) limit is obtained,and the fator

/(-1/3),thatdependsontheanisometry,beomes

1. ThislimitanbeusedinordertoobtainL=values

in the H phase, if mielles have largebut unknown

values[13℄.

Furthermore,intheaseofmielles,asstudiedhere,

aremustbetakeninthedenitionoftheRandL

val-ues in Eq. (1). They may refer to \eetive" radius

R

eff

andlengthL

eff

,ofthe\partilewithoutwater",

relatedto

v

. Tosubstitute

p for

v

inEq. (1)itwould

beneessaryto useR

tot andL

tot

ofthe\partile",

in-luding bound water. Alternatively, one an onsider

theparaÆnimielleandthevaluesin Eq. (1)beome

R

par , L

par and

vpar

, where

vpar

is referredtoas the

paraÆnivolume fration. Moreoverthefollowing

re-lationshipisvalid[13℄:

(R

e =R

par )

3

=(

v =

vpar )(

par

1=3)=(

e

1=3) (2)

ForlongmiellesthedierenesbetweenL

e ,L

par ,

L

tot

maybenegleted,but notthedierenesbetween

therespetiveRvalues.

IntheseHphasesnounique valueexists,beause

ofpolydispersityof miellarlength, aneessary

ondi-tion for the ourrene of diret I-H phase transition

[21℄,but \averagevalues" aremeaningful. Asweshall

see,thebehavioroftheHphaseandofphasesequenes

dependsontherelationsbetweenaand. Inaseof

-nitemiellesanduniformdereasein inter-partile

dis-tanes in all three dimensions, the anisometry of the

partileexistsalsointheelland oneexpets:

L==2R =a (3a)

Inaseof\innite"miellesoneexpetsinstead:

L==1 (3b)

The struture of the H phase, and partiularly its

evolutionwithinreasedonentration,willdependon

whih Eq. (3) is valid for the partiular system, and

onthefat thatLmaybeaonstantwithintherange

oftheHphaseormayvary withonentration. When

Eq. (3a) applies and the L value is onstant, it

re-sults a 1=3

v

. When Eq. (3b) applies, it results

a 1=2

v

. In the general ase, if it is experimentally

observed a =A x

v

, theondition given by Eq. (3a)

leads[11℄toanequationthatexpressesthevariationof

theanisometrywithonentration:

=[3 3K (1 3x)

v ℄

1

; (4)

p

(3)

Forylinderswithonstantradius,Kisaonstant.

Forx=1/3,theanisometryisalsoaonstant,givenby

Eq. (4). Butifx <1=3,Eq. (4) givestheformof

mi-ellar growthwith onentration, under the ondition

of Eq. (3a). The funtion K (1 3x)

v

varies from 2/3

to1as variesfrom 1(sphere)to1. However,asthe

limitofinniteylinderapproahes,Eq. (3a),andalso

Eq. (4),arenolongervalid,andtheonditiongivenby

Eq. (3b)isapproahed.

Thevalidityof Eq. (3)forapartiular systeman

beanalyzed[11℄throughomparisonofvaluesL=,

ob-tainedfrom Eq. (1)under thehypothesis oflongrods

(anisometryfator=1),and 2R =a,usinganestimated

Rvalueandtheknownaand

v

values. IfL=<2R =a;

there is indiationof shortrods, when theanisometry

fatorofEq. (1)(always<1)annotbenegleted. But

L=>2R =aindiates abreakdownofEq. (3a).

It has been also theoretially shown, in statistial

mehanis treatment of self-assembly systems [21,22℄,

that theexponents1/3and 1/2hold, respetively,for

niterigidrodsandforlongexiblerods(with

end-to-end ontat orwith persistent length on the order of

). Weshall thereforereferto onditionsL/ =2R/a

andL==1,Eq. (3),asharateristiof\nite/rigid"

and\innite/exible"rods,respetively. Intheaseof

exible objets Eq. (1) does not hold in strit sense,

but it is always possible to obtain an \apparent L=

value"whihsatisesEq. (1)forrods.

III The H phase in dierent

sys-tems

InthebinarySLS/watersystemtheintervalofthe

ex-plored

v

values,withintheHdomain, wassuÆiently

largeandallowedus tounambiguouslydene[9℄a1/3

behavior,typialof niterigidrodswithonstant

ani-sometry. Apreviousstudy[25℄oftheI-Hphase

transi-tionhadshownthattheylindergrowthdoesnotour

within the I phase,but at thetransition itself, aview

onsistent with the statistial theories published later

[21℄. Adetailedstruturalstudy[13℄withareful

anal-ysisoftheeletrondensitymapsobtainedfrom

dira-tionintensitiesonrmednite, althoughlong,rodsin

theHphaseofthebinarySLS/watersystem.

Further studies in other amphiphile systems

evi-dened that the exponent depends on the partiular

phasesequene,being1/2inasystemwitha

neighbor-ingholesteriphase[10℄ andsmallerthan1/3whena

neighboringubiphaseispresentinlipids[11,12℄. For

OLPC (oleoyl-lyso-phosphatidil-holine) / water

sys-tem,withI{H{Q

b

(ubibiontinuous){Lphase

se-quene,thegrowthofthelipidmielles,obtainedfrom

Eq. (4),waslearly followedalong theHdomain [11℄,

withanisometrynear1attheI-Htransitionupto1

at the H { Q

b

transition. The strutures of H and Q

phosphatidyl-holine),withI-Q

m

(ubimiellar){H

-Lphasesequene,andDTAC(dodeyl-trimethyl

am-monium hloride), with I { Q

m

{ H { Q

b

{ L phase

sequene have been detailed analyzed [12℄. Miellar

growthwasveriedalong the H phasesof these three

lipids(exponentx<1/3)andepitaxialrelationshipsat

both Q

m

{ H and H { Q

b

phasetransitions ould be

demonstrated[12℄. MiellesaresmallafterI {H

tran-sition,largerafterQ

m

{Htransition, \innite"before

H -Ltransition andhaveevenL=>1before H{Q

b

transition.

AstudyoftheI{Q

m

transition, thatpreedesthe

Q

m

-H transition in PaLPCrevealed [26,27℄that

mi-ellesremainspheroidalanddonotgrowtoSCintheI

phase,duetothelargersurfatantparameter,andalso

howthemiellarshort-rangeorderoftheIphase

trans-formsintothemiellarubiorderduetolosepaking

of the spheroidal mielles. For SLS mielles, a

trans-formation of spheroidal into SC polydisperse mielles

ours [28℄ stillin theI phase, dueto thesmaller

sur-fatantparameter,preparingtheI-Hphasetransition.

Therole ofthesurfatantparameterin promoting

ag-gregatetransformationswill befurther disussedlater

on.

Thepiturethatemergesfromthesestudiesfollows

a pattern. In the harged detergent SLS, miellesare

already small SC in the I phase, and grow at the I{

H transition, due to the\orientationindued growth"

mehanism [21℄, but have afterwards a onstant size,

untildistortionofthemiellarunitinduesphase

tran-sitionsleadingnallytotheLphase. Inneutrallipids,

growthdoesnotouratthetransitiontotheHphase,

but moreslowlyin thewhole Hrange. Inaseswhere

an \exess growth" ours, revealed by the ondition

L= > 1 when Eq. (1) is used (probably related to

undulationsofthemiellesurfae),thetransitionis

to-wardsabiontinuous ubiphase [11,12℄,while aH-L

transition is observed when the limit L= = 1 is not

over-passed. Itisnotyet possibletoonludewhether

these dierenesbetweenharged detergentsand

neu-tral lipids are due diretly to the soft inter-miellar

Coulombinterationortodierenesinwaterbinding.

Theexisteneofanemati (orholesteri)domain

seemstoorrelatewithaneighborHphasewith

expo-nentx= 1

=

2

(innite/exibleobjets), what is

intrigu-ing,sinethelyotropinemati phasesareexpetedto

orrespondtosmall mielles[7℄,andaminimum

rigid-ity is also neessary forthe N phases [23℄. Thus, the

roleofdeanolinpromotingtheappearaneofNphases

deservespartiular attention.

IV The H phase neighbour to N

phase

(4)

sys-entrateintheN domainof theternarysystemSLS/

water /deanol [18-20℄. Thephase sequene depends

on onentration and temperature and may be I - N

or I -H- N

[14-16℄. Figure1showstheexperimental

phasediagram.

The

v

intervalwhen theHphase isrossedin the

I-H-N

sequene (linesAandBin Fig. 1) istoosmall

toallowthedeterminationoftheexponentx,obtained

in thebinarysystem. However,aharaterizationan

be made by adiret omparison of the L= value

ob-tainedfromEq. (1),withknown

v andR

eff =18.4

A

[9,13℄, and the 2R

tot

=a value (a=2/ p

3 s 1

), as

per-formed in refs. [15,16℄. R

tot

is the \partile" radius,

givenbythesumoftheextendeddodeylhain,16.7

A,

andthepolarheaddiameter,4.6

A.ThetwovaluesL=

and 2R

tot

/a give the best denition of the

\ylindri-al partile" ofthe H phasein the diretions anda,

respetively.

Decanol

SDS

H O

2

66

12

10

8

68

70

72

74

76

24

26

28

30

32

34

2

4

6

L

N

C

N

D

H

B

A

Figure 1. Ternary phase diagram of the system

SLS/water/deanol as a funtion of weight omposition

from Quist et al[20℄, whih inludes the nemati domain

previouslyloalizedbyAmaraletal[18,19℄ andthe limits

ofthehexagonalphasegivenbyEkwall[2℄,whentheN

do-mainwasnotknown. ResultsforlinesA[15℄andB[16℄are

presentedinFig. 2. ThenotationSDS isused for SLSin

ref.[2℄and[20℄.

Figure2(given alsoin [16℄)givesL= and2R

tot =a

values from three dierent data sets [15,16,25℄, as a

funtion of the miellar

v

, whih inludes both SLS

and deanol. The threedatasets orrespondto

dier-ent SLS:water molarratios (M

w

), two in ternary

sys-tems, withM

w

=39.4(line AofFig. 1[15℄) and45.2

(line Bof Fig. 1[16℄), and one in the binary system

(M

w

= 24.0[25℄). The rsttwopoints forM

w =39.4

orrespondto theHphaseinoexistenewithIphase.

It isevidentfrom Fig. 2that theonditionL= =

2R

tot

=a is only attained in the H phase of the

stud-ied binary SLS/water system [25℄, in agreement with

a

1=3

behavior [9℄. However L= values are lose

to1and muhlargerthan 2R

tot

=a in theH phasesof

theternarySLS/water/deanolsystem, fortwo

dier-ent valuesof M

w

[15,16℄. It is seen that the addition

ofdeanol deeply hanges the harateristisof the H

phase,whihswithesfrompartilenite/rigidto

parti-leinnite/exiblebehavior. TheresultsforM

w =39.4

showevenatendenyforinreaseinL=andsmall

de-reasein2R

tot

=awithinreaseindeanolontent.

Figure2. (Appearingalsoin[16℄): L=(solid symbol)and

2Rtot=a(opensymbols)valuesintheHphasesasafuntion

of(SLS+deanol)volumeonentrationforthreedatasets,

orresponding to three dierent values of the water: SLS

molar ratio. Squares orrespond to the results [15℄ with

M

w

=39.4,irlestoaternarysystemwithM

w

=45.2[16℄

andtriangles to abinarysystem with Mw=24.0 [25℄. L=

valueswereobtainedfromEq.(1),using

v andR

e =18.4

A.

Rtot and a are, respetively, the total partile radius (see

textfor details)andthehexagonalellparameter.

Itshould benotedthattheR

eff

valueusedto

al-ulateL=wasobtainedinthebinarysystem[9,13℄. In

orderto further demonstrate theresultin theternary

system, analysis of the eletron density maps in the

ternarysystemwerealso performed[16℄. Themaps of

theternarysystem[16℄lookedverysimilartothemaps

[13℄ofthebinarysystemregardingthemiellarobjet.

Onlythefrationoupiedbythemielleinthe

hexag-onalellhanges,aordingtodierent

v

andavalues

ofthephases. Theternarysystemhasahexagonalell

withonsiderablymorewaterin thehexagonalplane.

Aonsistentinterpretationof theylindrial

stru-tureisobtained[13℄byestimatingR

eff

fromthe

ele-trondensitymaps using asariterion thelargest

dis-taneoftheontinuousontourfrom themiellar

en-ter. Results show [16℄ that, in fat, R

eff

is slightly

smaller in the ternary system. The average value is

about 4% smaller than the value obtained in the

bi-narysystem. TheR

par

values howeverare within 1%

thesameasin thebinary system. Thisindiates that

thepreseneofdeanolhangesonlyslightlythe

miel-larradius, and that the hange in R

eff

ours in the

(5)

Asfar astheL=valuesareonerned, theyareequal

to1,withintheevaluatedunertainties. Itmeansthat

suh ternary H phasesare builtup of innite/exible

ylindersinhexagonalarray.

Inorder to larify the role of deanol, we analyze

available theoriesofself-assemblyandonfront

experi-mentalandtheoretialphasediagrams.

V Phase diagrams and theories

of self-assembly

The theories of self-assembly predit the sequene I

-(N

) - H, as a funtion of inreased partile volume

fration

p

, for ases of nite hard rods [21℄,

persis-tent exible rods [22℄ and wormlikemielles [23℄. All

these theoriespresent phasediagramsasafuntion of

p

with thesametopology,seenin Fig. 3. There is a

triple point that separates I-Hand I-N-H phase

tran-sitions. In the ase of nite rigid objets, the phase

diagram[21℄isafuntionoftheassoiationfreeenergy

,whihdenesthepartilelength. Intheaseof

ex-ible longrods, thephasediagram [22,23℄is afuntion

oftheratiopersistentlength/miellediameter(P/D)

withtheaxial ratio(L/D)asparameter(D=2R).The

diret I-Htransition isexpeted in the limitsof small

rigidobjetsorveryexiblelongobjetsinIphase. In

theformeraninreaseinmiellarlengthisexpetedat

I-H transition[21℄.

TheexpetedtheoretialphasesequeneI-N

-H

ap-pearsintheexperimentalphasediagramoftheternary

system SLS/water/deanol, shown in Fig. 1, only for

about4wt%ofdeanolandbetween24.5and27wt%of

SLS.Thismeansthatonlyforthoseonentrationsthe

miellesare intheorret rangeoflengthand rigidity

toinduetheappearaneoftheN

phasewithinrease

inSLSontent.

Inverted phase sequene I{H{N

our, however,

byinreasingdeanolontent,uponSLSonentration

largerthan26wt%. Suhinversionmustbedue,

there-fore, to a spei eet of deanol, whih possibly

af-fetsthegrowthandexibilityofthemixedmiellesin

anon-trivialway. Theinversionoursintheontextof

theompletesequeneI-H-N

-N

d

-L,whihappears

onlywithinreaseindeanolontent. Weshallnot

dis-uss now two small biaxial islands [29℄, not shown in

Fig.1beausetheydo notappearalong theA and B

lines,hereanalyzedin detail.

Abetterunderstandingofthedeanoleeton

mi-ellarstruture andphasetransitions was reently

ob-tainedthroughthestudyofthephasesequeneI-H

-N

byinvestigatingtheternarysystemvarying M

d for

xed values of the water: SLS molar ratio (M

w ). It

was shown [14,15℄ that the inverted sequene appears

already for M

w

= 45.2 (line A of gure 1). For suh

highwaterontenttheHdomainexistsonlyforavery

narrowinterval, M 0:195. So, the line A ontains

in fat theH phasein thesequene I-H-N

andpasses

verynearthetriplepoint. TheHphase'sfeaturesover

alargerrangeofM

d

values,byinvestigatingsamplesat

M

w

=39.4(lineBofFig. 2), was alsoperformed[16℄

followingthesequeneI-H-N

.

Theresultsdisussedintheprevioussetion3

on-rma\rossover"fromthenite/rigidmodel[21℄tothe

innite/exible model [22,23℄for theH phasewith an

inreasein thedeanolontent. Thiseetisprobably

due essentially to miellar growth with deanol

addi-tion. Suh growth ours in a slighter form

(anisome-tries inreasingfrom2.4to3) inI phase[30℄ butmust

begreatlyenhanedbyouplingwithorientationaland

positionalorderintheHphase[21-23℄.

Isotropic

a

0

10

20

30

0.0

0.5

1.0

b

c

d

e

f

Crystal

Columnar

Nematic

v

p

F

~T

Figure3. Theoretialphasediagramsforrods,takenfrom

[21℄. The omplex path proposed in this work (and

de-sribed in the text) orresponds to the urve drawn here

aroundthetriplepoint,allowingfortheobservedphase

se-queneI-H(olumnar)-N

.

Inthe binary system mielles are short in I phase

andlongerinHphase,growingonsiderablyintheI-H

oexistenerange [13,25℄. FromX-rayresults [13℄ the

estimated lengthin phaseHgivesL/Din therange

6-16. The behaviora 1=3

v

assures [9℄ that mielles

are in thenite rigidregime,and thereforemust have

alargepersistenelength,orPL.Nonematiphase

exists inthebinarysystem,so thesystemisabovethe

triplepointattheI-Htransition.

Thetheoriesofself-assemblythatpreditI-(N)-H

phasetransitions[21-23℄areneitherspeiforternary

systems,nordealwiththespeiroleofdeanol.

How-ever, the eet of deanol might be dedued through

omparison ofthe experimentalphase diagramof Fig.

1withthetheoretialpreditions,showninFig. 3. The

rstpointtoemphasizeisthatdeanolbringsI-H

(6)

withoutdeanol. InthebinarysystemI-Hdiret

tran-sitionours[25℄for40wt%ofSLS,whileitanour

for lessthan26wt%forabout3.5wt%ofdeanol(see

Fig. 1). This shows that thepartile volume fration

p

, whih denes the transition point, is neither

pro-portionalto theSLSnortothetotalamphiphile (SLS

+deanol)weightonentration,andmust greatly

in-reasewith deanoladdition.

Let us rst ompare the experimental phase

dia-gram with thephasediagram forrigid rod[21℄. From

the position of the triple point we onlude that the

deanol ontent plays the role of the assoiation free

energy . A slight derease in deanol (from 4 wt%

to 3.7 wt%)promotesahangefrom I-N-Hto I-H

be-havior. It shows that inreasein deanol should have

the sameeet of aninrease in theabsolute valueof

(oralternativelyadereaseintemperature). Thisis

onsistent with the eet of miellar growth with

de-anol additionmentionedbefore. Fromthetheoretial

phase diagramforrigid rodstheH-N line anonlybe

rossed throughaderease in partilevolumefration

p

. The H-N

transition is experimentally obtained

with inrease in

v and

vpar

(sine M

d

inreases at

onstant M

w

), but this does not mean neessarily an

inrease in

p

. With the onstant R

tot

value used in

Fig. 2,

p

showsa slight inreasewith M

d

. Butif we

allow for asmall derease in R

tot

, as indiatedin the

struturalanalysis thatgaveadereaseof4%inR

eff ,

p

an atually derease as M

d

inreases. It is thus

possiblethat,dueto aombinedeetof marked

par-tile growth and smallderease in polar head size,

p

dereases within the H domain, induing the H - N

transition. Thepartilevolumefrationinthe

hexago-nalplaneislearlymuhsmallerintheternarythanin

thebinarysystem,whilethefrationintheuid

dire-tion inreases in the ternary system. So, deanol has

theeetofinitiallyinrease

p

,duetomiellargrowth

and inreasein miellarlength,but inexessprodues

asmalldereasein

p

,due toitseetin dereasethe

miellediameter.

Toompletethepitureitisneessaryto takeinto

aount that thenearbynemati phase N

is made up

of small mielles[31℄,while miellesare longin theH

phase. Thisanberationalizedonlyadmittingthat

mi-ellesmustbeomeshorterattheH{N

transitionand,

onversely,thatalargeinreaseinmiellarlengthmust

ourattheN

-Htransition. Suhfatisqualitatively

understandable, sine miellar growth is triggered by

both orientationaland positional order [21-23℄. What

experimental results show is that, sine anisometries

are nearly equalin the I phase ( 3) before theI

-H transition [14,30℄ and in the N

phase after the H

- N

transition [31℄,growth ours muh moredue to

positionalordering thandue toorientationalordering.

Enhanement of growth in the H phase, asompared

to theNphase,arisestheoretially[23℄from detailsof

Thenon-trivialI-H-N

sequeneintheSLSternary

system with inrease in M

d

may be therefore

under-stood onbasisofaomplexpath throughthe

theoret-ialphase diagramforrigid rods[21℄. I- Htransition

oursabovethetriplepoint,forsmalllengthsandlarge

volume fration in I phase, with large inrease in

mi-ellarlength at I - H oexistene. Alongthe H phase

inreasein M

d

orrespondstofurther miellargrowth,

arriving to the \innite end-to-end" limit. This path

goes, therefore, around the triple point (whih

orre-spondsto3for

p

0:45),withaninreaseinsize

anddereasein

p . H-N

transitionours belowthe

triplepoint witha markedderease in miellarlength

attheH-N

oexistene.

10

0

10

1

10

2

10

3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 0.8

C

N

L/D = 25

v

Figure4. Theoretialphasediagramforexiblerodstaken

from[22℄. Ordenate P/D(seetext)inlog sale asa

fun-tionof volume fration V. Theomplex pathproposed in

this work (and desribed in the text) orresponds to the

urvedrawnherearound thetriple point, allowing for the

observedphasesequeneI-H(olumnar)-N.

Let us now ompare the experimental phase

dia-gramalsowiththepreditionsforexiblerods[22,23℄,

sine resultsshowed that the H phase is in the

\in-nite/exible" limit. It has been shown that the

exis-teneoftheNphaserequiresaertainrigidityof

semi-exiblemielles. ComparisonofthetriplepointofFig.

1 with the theoretial phase diagram (Fig. 4) shows

thatinreaseindeanolontentmustindueaninrease

intheP/Dratioofalongexiblerod. Thatmeansthat

inrease in deanol should inrease rod rigidity, and

not promote exibility. The mielles in the H phase

of the binary system are quite rigid, sine they have

rigid behavior and are long (L/D 10). Therefore

theyhaveP L. Inrease in rigidityanbeobtained

either by inrease in P/D or derease in L/D. Sine

deanolpromotesmiellergrowth(inreasein L/D),it

must promote also marked inrease in P/D in order

to allow the H - N

transition within the theoretial

framework of exible rods. Inrease in rigidity of rod

like mielleswith deanol addition anbe understood

(7)

anol (p

o

1), responsible for its bending energy at

the miellar polar / apolar interfae, is onsiderably

larger than that of SLS (p

o

1=3), and the

param-eter of the mixed region will be also orrespondingly

larger[24℄. Thus deanolpromotes rigidityin rod like

mielles, evenif may eventuallypromote exibility in

planar membranes, due to the planar symmetry

om-binedwithdereaseinhargeofpolarsurfaes.

Thediret I -H transition ours abovethetriple

point(whih oursforP/D13forlongexiblerods

[22,23℄). Inrease in M

d

orresponds again to a path

\turningaroundthetriplepoint",withinreaseinL/D

andP/D.ThetransitionlineH-N

isrossedalsowith

a derease in

p

, ombined with inrease in P/D. It

shouldberemarkedthat,inoneofthetheoretialphase

diagrams[22℄,itispossibleaslightlyre-entrant

behav-ior (for L/D 25), whih allows to ross the H - N

line atxed

p

, butwith averylargeinreasein P/D

(ofabout3ordersofmagnitude). Howeveraderease

in

p

seems moreplausible. Moreover, as the innite

limitisbeingapproahed,theoupanyinthe

hexag-onalplane, givenby2R =a, whih islearly dereasing

withM

d

, playstheroleof

p .

In onlusion, the experimental fats an be

ex-plained within the frameworkof the theoretial phase

diagrams for self-assembly systems, but with arather

omplexpathunifying bothphasediagrams. The

\in-nite/exible"limitbehaviorobservedfortheHphase

of the ternary system annot in fat be asribed

nei-therto \innite"nor\exible" mielles,sinedeanol

promotes growth, but not exibility. There must be

thereforealimiton thevalidityof. Eq. (3a), possibly

relatedto aminimumvalueof 2R/athat is onsistent

withpartitionofwaterinthethreedimensions. Bellow

suhlimit,Eq. (3b) holds. Thusthe\innite/exible"

limitisreahedin theternarysystembeausedeanol

is unable to form mielleson its own, beingfored to

enterontheSLSmielles,ausingmiellargrowthand

dereasein 2R =a. Thereal ternarysystemrossesthe

I{Hlinewithinthe\nite/hard"framework,then

mi-ellargrowthwithinreaseinM

d

induesapassageto

the\innite"framework,whihtogetherwithderease

in

p

indues nally the rossing of the H { N

line,

and this transition is again within the framework of

the\nite/hard"limit.

VI The N

(N

b

) N

d

phase

se-quene

This sequene has not been worked out yet

theoret-ially within the framework of self-assembly theories,

whih onsider the mielle symmetry as a priori

de-ned,andexistuptonowonlyfortheI{N

{HandI

{N

d

{Lsequenes,thatreferrespetivelytorodsand

diss. It isoutof thesopeofthepresentpaperto

re-donottakeself-assemblyintoaount,andalsodonot

aountfortheneighboringHandL phaseswith

posi-tionalorder,aswellastheextensiveworkdonebyother

groupsin theseondorderphasetransitionswith

tem-peraturethat ourin apartiularsystem(potassium

laurate/water/deanol).

However,theN

-N

d

transitionhasbeenshown

ex-perimentally [19,24℄ to be a funtion of deanol:SLS

molar ratio (M

d

) in systems with three dierent

am-phiphiles, ourring always around similar M

d

val-ues. Furthermore, it wasshown [32℄ that the system

SLS/water/deanolhasarstorderphaseN

-N

d

tran-sitionatsuhM

d

value. Twosmallbiaxialislandshave

been later disovered [29℄, evidening also rst order

transitions and even the existeneof two dierent

bi-axialphases(N

b+ andN

b

),stronglyindiating

miel-larshapetransformations. Clearly,N

-N

d

diret phase

transitions exist, and phase N

b

does not our

nees-sarilyinbetween.

Wehavedevelopedanelasti bending theoryfor a

\singlemielle",basedonthesurfatantparameterp

o ,

whihis ableto aountfor shapetransformations. It

has beenshown [28℄ that a form transformation from

prolate spheroids to spheroylinders (SC) ours, as

the miellar anisotropy inreases (for > 1:8), due

to the bending energy of the polar/apolar interfae.

Suh transformation is a pre-requisite for I - H

tran-sition, sinethe SC form allowspolydisperse grow. It

hasalsobeenshown[33℄thatitisenergetiallyfavored

inSCmixed miellesthatdeanolstaysinthebodyof

theylinder, leavingunmixed amphiphilein the

hemi-spherialaps. Thetendeny of deanolto loalizein

the body of SC mielles ours in order to derease

the eletrostatiinteration between amphiphile polar

heads, and is responsiblefor miellargrowth with

de-anol addition. The shorter mielles in the N

phase

will have a larger deanol mole fration in the body

of the SC (here named y) than in the H phase, but

still without deanol in the hemispherial aps. Only

withfurther deanolinrease,attheN

-N

d

transition,

the deanol of theylindrial body imposes amarked

hangeinmiellarform(fromSCtoplatelet),as

exten-sivelystudiedby Amaralet al[24℄. A synthesisof the

obtainedresultsisshownin table1. Theexperimental

M

d

valueand the known SC anisometry , at the N

{ N

d

transition, give an \experimental" y, whih an

be ompared to the preditionsof the elastibending

model.

Table1showsaonstanty valueforthethree

am-phiphiles. NotethattheM

w

valuesatthetransitionfor

the three amphiphiles are rather dierent[19℄, due to

dierent miellarsizes and waterbinding. The elasti

bendingtheory,forasinglemixedmielle,orretly

pre-dits[24℄atransformationatthisy valueforexpeted

p

o

valuesof amphiphile and osurfatant, without

(8)

This form transformation, besides oiniding with N

{N

d

transitions, oursalso intheI phase,asstudied

bydetailed analysis[17℄ofurvesofsmall angleX-ray

sattering intheSLS/water/deanolsystem.

TableI.Experimental M

d

values(deanol/amphiphile

moleular ratio), estimated anisometries of the SC

and relatedy values(deanol/amphiphileratiosin the

body of the SC), at the N

-N

d

transition, taken from

[24℄. SDS, KL and SLS are, respetively, the

am-phiphiles sodium deyl sulfate, potassiumlaurateand

sodiumdodeylsulfate.

SDS KL SLS

M

d

0.300.03 0.380.02 0.380.01

2.30.3 3.00.3 3.0 0.3

y 0.650.03 0.640.03 0.640.03

Thisideaof shapetransformationat theN

- (N

b )

-N

d

phasesequene inspiredaproposalofonsidering

thestatistialmehanisofpolydisperseuniaxialforms,

whih wasworkedoutbyHenriques &Henriques[34℄,

leading to aphase diagram with the typial topology

oftheI{Ntransitions,inludingthetwouniaxialand

onebiaxialphases. Phasetransitionswithtemperature

are inthis model orrelatedwithdierent populations

ofthetwouniaxialforms.

To sum up, the sequene I - H - N

- N

d

- L an

beunderstoodbya\superposition"oftheoriesof

self-assembly (whih onsider the mielle symmetry as a

prioridened)withanelastibendingtheoryfora

\sin-glemielle"(whihaountsforshapetransformation).

Itremainstobeworkedoutanextensionofsuhelasti

theoryto astatistialensembleofmielles.

Aknowledgments

Theauthorthanksthe ontributionofthe

ollabo-ratorsoftheworksherereviewed,partiularlyDrs. R.

Itri,P.Mariani,G.Taddei,O.SantinFilho,V.

Castel-letto and C. V. Teixeira, and thenanial support of

PRONEX/CNPq/MCTandFAPESP.

Referenes

[1℄ V. Luzzati, Biologial Membranes, ed. D.Chapman,

AademiPress,NewYork,pp.1-123(1968).

[2℄ P.Ekwall,AdvanesinLiquidCrystals,ed.G.H.Brown,

AademiPress,London,vol.1,pp.1-142(1975).

[3℄ J.N.Israelahvili,D.J.Mithell,andB.W.Ninham,J.

Chem.So.FaradayTrans.II72,1525 (1976).

[4℄ P.Mariani,V.Luzzati,andH.Delaroix,J.Mol.Biol.

204,165(1988).

[5℄ J.B. Forrest and L.W. Reeves, Chem. Rev. 81, 1

(1981).

[6℄ L.Q. Amaral,C.A. Pimentel, M.R. Tavares, andJ.A.

[7℄ J. Charvolin, A.M. Levelut, and E.T. Samulski, J.

PhysiqueLett.40,L-587(1979).

[8℄ L.J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000

(1980).

[9℄ L.Q.Amaral,A.Gulik, R.Itri,andP.Mariani. Phys.

Rev.A46,3548(1992).

[10℄ L.Q.Amaral, R. Itri, P. Mariani, and R. Miheletto,

Liq.Crystals12,913(1992).

[11℄ P. Mariani and L.Q. Amaral, Phys. Rev.E 50, 1678

(1994).

[12℄ P.Mariani,L.Q.Amaral,L.Saturni,andH.Delaroix,

J.Phys.II(Frane)4,1393(1994).

[13℄ R.Itri,L.Q.Amaral,andP.Mariani,Phys.Rev.E54,

5211(1996).

[14℄ R.ItriandL.Q.Amaral,Phys.Rev.E58,1173(1998).

[15℄ C.V.Teixeira,R.Itri,andL.Q.Amaral,Langmuir15,

936(1999).

[16℄ O. Santin Filho, R. Itri, and L.Q. Amaral, J. Phys.

Chem.104,959(2000).

[17℄ C.V.Teixeira,R.Itri,andL.Q.Amaral,Langmuir16,

6102(2000).

[18℄ L.Q. Amaral, M.E.M. Helene, D.R. Bittenourt, and

R.Itri,J.Phys.Chem.91,5949(1987).

[19℄ L.Q.AmaralandM.E.M.Helene, J.Phys.Chem.92,

6094(1988).

[20℄ P.O.Quist,B.Halle,andI.Furo,J.Chem.Phys.95,

6945(1991).

[21℄ M.P. Taylor and J. Herzfeld, Phys. Rev.A 43, 1892

(1991).

[22℄ R.Hentshkeand J.Herzfeld,Phys.Rev.A 44,1148

(1991).

[23℄ P.vanderShoot,J.Chem.Phys.104,1130(1996).

[24℄ L.Q.Amaral,O.SantinFilho,G.Taddei,andN.

Vila-Romeu,Langmuir13,5016(1997).

[25℄ R. Itri and L.Q. Amaral, J. Phys. Chem. 94, 2198

(1990).

[26℄ V. Castelletto, R. Itri, and L.Q. Amaral, J. Chem.

Phys.107,638(1997).

[27℄ V.CastellettoandL.Q.Amaral,J.Phys.Chem.B103,

8877(1999).

[28℄ G.TaddeiandL.Q.Amaral,J.Phys.Chem.96,6102

(1992).

[29℄ P.O.Quist,Liq.Cryst.18,623(1995).

[30℄ R.ItriandL.Q.Amaral,Phys.Rev.E47,2551(1993).

[31℄ P.O.Quist,B.Halle,andI.Furo,J.Chem.Phys.96,

3875(1992).

[32℄ L.Q.Amaral,LiquidCrystals7,877(1990).

[33℄ W.M. Gelbart, W.E. MMullen, A. Master, and A.

Ben-Shaul,Langmuir1,101(1985).

[34℄ E.F. Henriques and V.B. Henriques, J. Chem. Phys.

Imagem

Figure 2 (given also in [16℄) gives L= and 2R
Fig. 1 beause they do not appear along the A and B
Fig. 1). This shows that the partile volume fration

Referências

Documentos relacionados

rheologial behavior of holesteri liquid rystal

thermal diusivity and the optial absorption oeÆient of one side dyed polymer foils..

these ratios... Normalized PAS intensity in the NIR range for the peaks ratio a) Peak1/Peak2 of PEg samples; b) Peak2/Peak3.

(I) as a funtion of the frequeny (f ) it was possible to ev aluate a harateristi time () in order.. of magnitude as a funtion of the temperature

In this devie the hole transport layer is obtained using a thin lm of 1-(3-methylphenyl)-.. 1,2,3,4 tetrahydroquinoline-6-arboxyaldehyde-1,1'-diphenylhydrazone (MTCD), while

for prodution of thermotropi liquid rystalsC. The hiral fragment synthesised was

we onsider the mehanism of photoalignment of liquid rystals both in the bulk and at the surfae.. by a photosensitive

of phase biaxiality is well based on moleular biaxial-.. ity but not neessarily on shape biaxiality