• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
4
0
0

Texto

(1)

New Liquid Crystalline Tolanes from (-)-Menthone

Fernando Ely, AdailtonJ. Bortoluzzi, HugoGallardo,

DepartmentofChemistry

UniversidadeFederaldeSantaCatarina,CEP88040-900, Florianopolis,SC,Brazil

and AloirA. Merlo

InstituteofChemistry

UniversidadeFederaldoRioGrandedoSul,CEP91510-970, PortoAlegre,RS,Brazil

Reeivedon16November,2001

Synthetimanipulationswerearried outwith theaim of obtaininganadvanedlinearfragment

for prodution ofthermotropiliquid rystals. Thehiralfragment synthesisedwas introduedin

atolanbenzoatemesogeniorebyouplingofSonogashira. Thenalhiraltolansshowedsmeti

A andCandnematiliquidrystallinephases. Therystallographi strutureoflatonefrom(-)

menthoneispresented.

I Introdution

The designand synthesis of newhiral liquid rystals

hasexperienedagreat growth,espeiallyof

ferroele-tri liquid rystals (FLCs). This is due to pratial

appliations of FLCs as high resolution displays and

inphotonialtehnologiesforstorageandreprodution

of information based on non-linear optial (NLO)

ef-fets [1℄. The orrelation between moleular hirality

andphysialpropertieshasbeenwellstudiedandsome

models proposed [2℄. Conventionally, natural

abun-dantmaterialslike aminoaidsorommerially

avail-ablealoholsandesterssuhas(S)-2-methylbutan-1-ol,

(S)-2-methylotan-1-ol and (S)-ethyl latate are used

to synthesize hiral liquid rystals [3℄. (-)-Menthone

derivatives have been used only as hiral dopants, to

indueferroeletriityinsmetiC(S

C

)liquidrystals

ormorereently, in photohromipolymers[4℄. Inall

asestheoriginal yli strutureof (-)-menthonewas

maintained. InthepresentworkwedesribeaeÆient

syntheti approah to transform the (-)-menthone to

anappropriatehiralstruturewhihanprovidehigh

stereo- and regio-ontrol for liquid rystals synthesis.

Toverify the eÆieny ofthe hiral hain, wepresent

thesynthesisofnewliquidrystallinetolanes

(dipheny-laetylenes)asaontinuationofourmostreentstudy

[5℄.

II Experimental

II.1 Teniques

1 13

CDCl

3

with 270 MHz (Bruker HX-270) spetrometer

using TMS as internal standard. IR Spetra were

reorded in KBr diss, nujol dispersions orlms with

a Perkin-Elmer model 283 spetrometer. Elemental

analysiswasdoneusingaPerkinElmer2400CHN.

Op-tial rotations were measured on a Perkin-Elmer 341

polarimeter at the sodium D line. GC analysis was

onduted inaVarian 2equippedwithaFIDdetetor

using H

2

asarriergas; apillary olumn used-DEX

120 (30m x 0.25mm). X-raydata were olletedin a

difratometer Nonius CAD-4; renement: full-matrix

least-squares on F 2

, GooF (F 2

), programs: solution

! SHELXS97; renement ! SHELXL97; moleular

drawing!ZORTEP.Thethermaltransitionsand the

mesomorphitextures were determinedusing a

Olym-pusBX50polarisingmirosopein onjuntionwitha

MettlerToledoFP-90heating stage andPerkinElmer

DSC-2,usingindiumasastandardalibration.

The syntheti methodology used was very

onve-nient,itisdepitedinsheme1.

Baeyer-Villiger oxidation aorded the

orrespon-dent latone (1) [6℄. Three oxidation systems were

tested onapreparativesale(a. 10 gofketone)and

the resultsobtainedare summarized in Table1. This

isthemostimportantstepinthesynthesisbeausethe

stereo-andregio-ontrolmustbeguaranteed.NMR

ex-periments( 1

H, DEPT, COSY 1

H-1

H and HETCOR),

hiralapillaryGCandX-rayrystalanalysiswereused

(2)

a

O

O

O

CH

3

O

O

O

O

(Br)I

X

4a X=H

b X=NO

2

1

2

e, f

b

HO

O

c, d

3

OH

OTBDMS

OH

Sheme1: Regentsandonditionsa. Baeyer-Villiger

oxida-tion (see table1). b. MeOH, H2SO4 on., rt, overnight,

(83%). . TBDMSCl, imidazol, DMF, rt, 24h (88%). d.

MeOH,2.9MKOH,reux,3h(73%);e. 4-iodophenolor

2-nitro-4-bromophenol, DCC, DMAP, CH2Cl2, rt, overnight

(73% and 66% respe.). f. HF48%/CH

3

CN, rt, 15 min,

(>95%).

C9

C7

C6

C8

C5

C4

O1

C2

C3

C1

C10

O2

Figure1. Moleularstrutureofthelatonefrom(3R

,6S)-(-)-6-hydroxy-3,7-dimethylotanoi aid (1) with

atom-labellingsheme. Thermalellipsoidsareshownat40%

prob-Table1. Baeyer-Villigeroxidationof(-)-menthone.

Entry Peracid Time

(h)

T

(ºC)

Conversion

a

Yield

(%)

Ketone

recov.

(%)

1 b

66.5

25

Incomplete

32

41

2 c

96.0

25

Incomplete

70

13

3 d 7.5

25

Complete

90 -

a

Monitored by TLC using hexanes/ethyl acetate (7:3) as eluent.

b

MCPBA (3-Chloroperoxybenzoic acid).

c

MMPP (Magnesium monoperoxyphtalate hexahydrate).

d

MCPBA/CF

3

CO

2

H.

Thehiralpreursors(4aand4b)wereoupledwith

atolanebenzoatemesogenioreto investigateits

eÆ-ieny in the prodution of liquid rystals. Sheme 2

illustratesthesynthesisof themesogenioreand the

targetmoleules.

OH

a, b, c

O

H

O

H

21

C

10

O

d

5

OH

CO

2

Me

O

O

H

21

C

10

O

O

O

O

O

H

21

C

10

O

O

O

NO

2

OH

6a

6b

Sheme 2: a. n-deylbromide, K2CO3, butanone; b. i.

MeOH, KOH; ii. on. HCl (74% two steps); .

4-ethynylphenol,DCC,DMAP,CH2Cl2 (82%);d. 4aor4b,

PdCl2(PPh3)2,CuI,PPh3,Et3N/THF(3:1),(51-55%).

Methyl 4-hydroxybenzoate was alkylated with

n-deylbromide by a traditional method. After

hy-drolysis the resultant aid was esteriated with

4-ethynylphenol [7℄ furnishing the alkyne 5. Palladium

atalysedross-ouplingbetween5and4aor4bledto

(3)

Table 2.Crystaldataforthelatonefrom(3R ,6S)-(-)-6-hydroxy-3,7-dimethylotanoiaid(1).

Empirical formula

C

10

H

18

O

2

Formula weight

170.24

Temperature (K)

293(2)

Wavelength (Å)

0.71073

Crystal system, space group

Orthorhombic, P2

1

2

1

2

1

a (Å)

9.632(2)

b (Å)

10.273(2)

c (Å)

10.527(2)

Volume (Å

3

)

1041.6(4)

Z, Calculated density (g.cm

-1

)

4, 1.086

Absorption coefficient (mm

-1

)

0.073

F(000)

376

Crystal size (mm)

0.50 x 0.40 x 0.40

Reflections collected / unique

1074 / 1074

Data / restraints / parameters

1074 / 0 / 110

GOOF (F

2

)

1.098

Final indices

R1 = 0.0409,

w

R2 = 0.1006

Table3: Seletedphysialandspetrosopidatausedtoharaterizethenalompounds.

Elemental analysis

Com-

pound

Optical rotation

Calcd for

Found

1

H-NMR (

δ

, ppm)

13

C-NMR (

δ

, ppm)

6a

[

α

]

D

20

-2.0

(c 0.65, CHCl

3

)

C

41

H

52

O

6

C 76.87

H 8.12

C 76.23

H 8.12

į

0.93 (m, 9H, 3CH

3

), 1.08 (d,

3H, J=6.5Hz, CH

3

), 1.50 (m,

21H, 10CH

2

and CH), 2.10 (m,

1H, CH), 2.40 (dd, 1H,

J

ab

=15.0Hz and J

ax

=7.8Hz,

-CH

a

HCOOAr, A part of ABX

syst.), 2.60 (dd, 1H, J

ab

=15.0Hz

and J

bx

=6.0Hz, -CHH

b

COOAr,

B part of ABX syst.), 3.35 (m,

1H, -CH(CH

3

)

2

OH, 4.05 (t, 2H,

J=6.4Hz, -CH

2

OAr), 6.97 (d,

2H, J=8.7Hz, Ar), 7.09 (d, 2H,

J=8.5Hz, Ar), 7.21 (d, 2H,

J=8.5Hz, Ar), 7.56 (m, 4H, Ar),

8.14 (d, 2H, J=8.7Hz, Ar)

į

17.0, 18.9, 19.9, 22.6,

25.9, 29.3, 29.5, 30.7,

31.5, 31.9, 33.4, 41.6

(–OCH

2

C

9

H

19

), 68.3

(-CH(CH

3

)

2

OH), 88.6

(Ar

1

C

CAr

2

), 88.7

(Ar

1

C

CAr

2

), 114.3,

120.6, 120.7, 121.2,

121.7, 121.9, 132.3,

132.7, 150.5, 150.9,

163.6, 164.6 (ArCO

2

Ar),

171.3 (ArOC=OCH

2

-)

6b

[

α

]

D

20

-1.0

(c 0.69, CHCl

3

)

C

41

H

51

NO

8

C 71.82

H 7.44

N 2.04

C 71.21

H 7.45

N 1.95

į

0.92 (m, 9H, 3CH

3

), 1.08 (d,

3H, J=6.6Hz, CH

3

), 1.48 (m,

21H, 10CH

2

and CH), 2.15 (m,

1H, CH), 2.45 (dd, 1H,

J

ab

=15.0Hz and J

ax

=7.8Hz,

-CH

a

HCOOAr, A part of ABX

syst.), 2.7 (dd, 1H, J

ab

=15.0Hz

and J

bx

=6.0Hz, -CHH

b

COOAr,

B part of ABX syst.), 4.05 (t,

2H, J=6.5Hz, -CH

2

OAr), 6.97

(d, 2H, J=8.8Hz, Ar), 7.21 (d,

2H, J=8.7Hz, Ar), 7.24 (d, 2H,

J=8.5Hz, Ar), 7.60 (d, 2H,

J=8.5Hz, Ar), 7.75 (dd, 1H,

J=8.7 and 1.9Hz, Ar), 8.13 (d,

2H, J=8.8Hz, Ar), 8.22 (d, 1H,

J=1.9Hz, Ar)

į

14.2, 17.1, 19.0, 20.0,

22.8, 26.0, 29.2, 29.4,

29.6, 30.3, 31.5, 32.0,

33.0, 33.5, 41.3

(–OCH

2

C

9

H

19

), 68.4

(-CH(CH

3

)

2

OH), 86.3

(Ar

1

C

CAr

2

), 91.3

(4)

III Results and Disussion

Conventionalhiral terminalgroupsarealmost always

linearand possessontiguousstereogenienters. The

unique branhing points are only the hiral enters.

From this point of view the ompound 3 is not a

"onventional" hiral tail suh as 2-methylotanol or

aminoaids are. In the ompound 3 the asymmetri

enters are spaed by twoatoms of arbon and

addi-tionally is present a methyl group at the end of the

hydroarbon hain. However, important fators suh

as a straight hain and the presene of good linking

arboxylate group remain. Methyl branhed systems

generally show lower learing points than their linear

analogs[8℄;presumablybeausethemethylgroupstiks

outatananglefromthemoleularrotationalylinder,

andtherebydisruptseÆientpakingbyinreasingthe

separation between neighboring moleules. However,

as themethyl branh is moved further away from the

oreofthemesogen,thelearingpointdepressionis

re-dued. Thisdemonstratesthegreaterdegreeof

onfor-mational freedomfurtherawayfrom theoresinethe

eet of branhingis lessmarked[9℄. Thus webelieve

thatthemethylgroup,plaedatthelastarbonofthe

mainhainin3,doesnotsigniantlytakeeetonthe

mesomorphi behavior. Also the hydroxyl groupmay

behaveinthesamewayorevenhelpmoleularpaking

byestablishingintermoleularhydrogenbonds.

Themesomorphibehaviorofthenal tolaneswas

investigated by optial mirosopy and the thermal

propertiesare ompiledin Table4. These ompounds

exhibitedhiralnemati(N*),smetiA(S

A

)and

fer-roeletri(S

C

*)liquidrystallinephases.

Table4: Seletedphysialandspetrosopidatausedto

haraterizethenalompounds.

Compound K S

A SC

*

N

*

I

6a

113.2

(108.5)

164.4

6b

78.6

105.1

128.1

Thetriplebondbetweentwoaromatiringsis

inter-esting, beauseitontributesto thepolarizability,

lin-earityandrigidityofthenalmoleules. Thesefators

areimportantanddeterminemanyphysialproperties,

suhasthermalstabilityandvisosityinliquidrystals.

The preseneofthenitrogroupdereasedthe melting

pointexpressively(ompare113.2 Æ

Cforompound6a

and78.6 Æ

Cforompund6b)andalsoreduedthe

ther-malstability(ompare164.4 Æ

C forompound6aand

128.1 Æ

Cforompound 6b). Suhbehaviouris duethe

greater van der Waals volume of the nitro groupand

IV Conlusions

(-)-Mentone hasbeentransformedintoanearlylinear

moietythroughseveralhemialreationsinludingthe

Baeyer-Villigeroxidation. Twonewhiraltolaneswere

synthesised, one non-laterally substituted 6a and the

other nitro-laterally substituted 6b, using the hiral

ompoundfrom(-)-mentone. Bothompoundsshowed

a N

mesophase and 6b shows also an enantiotropi

S

A

phase. Butundoubtedly,themoreexitingresultis

theS

C

*ferroeletrimesophaseobservedforompound

6a, beause it provesthat ompound 3 is eÆient for

produingaS

C

*phase.

Aknowledgements

Thisworkwassupportedbytheprograms

PADCT-III and PRONEX and the agenies CNPq and

FAPERGS. We thank MsValeria Belli Riatto for the

donating reagents and Prof. Ted Ray Taylor for the

helpfulldisussions.

Referenes

[1℄ Maromoleular Host-Guest Complexes: Optial and

Optoeletroni Properties and Appliations, D. M.

Walba, J. A. Rego, N. A. Clark, and R. Shao,

Ma-terialsResearhSo.1992; (b)M. Shadt,Liq.Cryst.

14(1),73,(1993).

[2℄ (a)T.Sierra,J.L.Serrano,M.B.Ros,A.Ezurra,and

J.Zubia, J.Am.Chem.So.114,7645, 1992and

ref-erenesitedtherein;(b)J.W.Goobby,I.Nishiyama,

A.J.Slaney,C.J.Booth,andK.J.Toyne.Liq.Cryst.

14(1), 37, (1993); ()C.J.Booth, D. A.Dunmur,J.

W.Goodby,and K.J. Toyne. Liq.Cryst.20(6), 815,

(1996).

[3℄ (a)J.Shaht,P.Zugenmaier,andF.Horh.Liq.Cryst.

26(4),525, (1999);(b)H.Gallardo,andA. A.Merlo.

Synth.Comm.,23(15),2159,(1993);()H.T.Nguyen,

J.C.Rouillon,A.Babeau,J.P.Maerou, M.Cotrait,

andH.Allouhi.Liq.Cryst.26(7),1007,(1999).

[4℄ (a) A. R. Imamaliev, M. G. Nadzhafova, and D. F.

Aliev,Russ.J.Phys.Chem.67(10),2023, (1993);(b)

L.A.Kutulya,L.D.Patsenker,V.V.Vashhenko,V.

P.Kuznetsov, V. I.Kulishov, Y. N. Surov, and V.V.

Kravets, Russ. Chem. Bull. 44(7), 1200, (1995); ()

A. Y. Bobrovsky, N.I. Boiko, and V.P. Shibaev, Liq.

Cryst.26(12),1749, (1999).

[5℄ A.A. Merlo, J. E.Braun, U. B.Vasonelos, F.Ely,

andH.Gallardo,Liq.Cryst.27(5),657,(2000).

[6℄ S.S.C.KohandChamberlin,R.Synth.Comm.5,829,

(1989).

[7℄ Thisompounddeomposeswithlight orheating and

wassynthesisedasdesribedbyE.T.SabourinandA.

Onophenko,J.Org.Chem.48,5135,(1983).

[8℄ G.W. Gray and S.M. Kelly. Mol. Cryst. Liq. Cryst.

104,335,(1984).

[9℄ Handbook of Liquid Crystals Researh, Collings, P.J.

Imagem

Figure 1. Moleular struture of the latone from (3R ,6S)-
Table 3: Seleted physial and spetrosopi data used to haraterize the nal ompounds.

Referências

Documentos relacionados

rheologial behavior of holesteri liquid rystal

thermal diusivity and the optial absorption oeÆient of one side dyed polymer foils..

these ratios... Normalized PAS intensity in the NIR range for the peaks ratio a) Peak1/Peak2 of PEg samples; b) Peak2/Peak3.

(I) as a funtion of the frequeny (f ) it was possible to ev aluate a harateristi time () in order.. of magnitude as a funtion of the temperature

In this devie the hole transport layer is obtained using a thin lm of 1-(3-methylphenyl)-.. 1,2,3,4 tetrahydroquinoline-6-arboxyaldehyde-1,1'-diphenylhydrazone (MTCD), while

point (whih ours for P/D 13 for long exible

we onsider the mehanism of photoalignment of liquid rystals both in the bulk and at the surfae.. by a photosensitive

of phase biaxiality is well based on moleular biaxial-.. ity but not neessarily on shape biaxiality