• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
12
0
0

Texto

(1)

On the Appliation of the Photoaousti Methods

for the Determination of Thermo-Optial

Properties of Polymers

A. C. Bento*, D. T. Dias, L. Olenka, A.N. Medina, and M. L. Baesso

UniversidadeEstadualde Maringa, Departamentode Fsia,

Av. Colombo5790,87020-900, Maringa-PR,Brazil

Reeivedon6November,2001

Inthispaper,theappliationofphotoaoustimethodstostudythermo-optialandspetrosopi

propertiesofpolymersisdesribed.ThePhotoaoustiSpetrosopy,theTwo-BeamPhase-Lagand

also theso-alled OpenPhotoaousti Cellmethodswill be presented. Thetheoretialbasis for

quantitativemeasurementsisdisussedtogetherwiththeadvantagesandlimitationsofthemethods

as ompared with onventional measurements. Appliations for spetrosopi and depth prole

analysisandalsofor thermalpropertiesmeasurementsinseveralpolymerssamplesaredisussed.

I Introdution

The sound eet indued in a heated solid by an

in-termittentlightbeamwasrstobservedbyBellin the

eighteenth entury [1℄. This eet was understood as

aphotothermal(PT)phenomenaandwastheoriginof

theso-alledphotoaoustieet. Nowadays,thereisa

wide range of PT tehniques and most of them were

derived from the Photoaousti Spetrosopy (PAS).

Basially,theirdierenesare relatedtothe employed

detetion shemes. There aredetetionsystemsusing:

photodiodes[2℄,pyroeletris[3,4℄,piezoeletris[5,6℄,

thermopiles[7℄,andmirophones[8,9℄.

Photoaousti (PA) is a photothermal phenomena

that hasbeenwidelyusedto studythethermo-optial

propertiesofmaterials. Inbrief,PAeetonsistsin

il-luminatingagivensamplewithamodulatedlightbeam

andmeasuringthesubsequenttemperatureutuation

induedin thesample resultingfromthelight

absorp-tion,duetononradiativede-exitationproesseswithin

the sample. Sine thesignal responds onlyto the

ab-sorbed light, the eets of sattered light playno

sig-niant role in these measurements. In addition, this

methodpermittosolvethediÆultiespresentedbythe

onventional OptialSpetrosopy[10-13℄,whih does

notgenerallyallowstudiesofveryweakabsorbing

ma-terials and also opaque samples. Some PA studies in

the infrared are based on Fourier Transform method

(FTIR-PA),whihallowsthemeasurementstobe

per-formed inthemedium infrareduptoabout400m 1

:

PA ispartiularlyusefulin this regionsineitan

de-tetthehydrogenbonds(C-H,O-HandN-H)thatmay

presentovertonesand ontribution from the

ombina-bonds. Areviewin theliteratureshowsthata

onsid-erable number of the FTIR-PA study is in analytial

sienesapplied topolymerarea[14-19℄.

Inthepolymerarea,there areseveralkindsof non

homogeneoussamplesthatpresenthighlevelof

satter-inglightandalsosamplesthatareopaqueina

onsider-ablepartofthespetrum. Due to that, photothermal

method is reognized to be an important

experimen-talproeduretoaessthethermo-optialpropertiesof

polymerimaterials.

In this paper a seletion of PA methods for

har-aterization of polymers is presented. The UV-VIS

PhotoaoustiSpetrosopy(PAS)andPhaseResolved

PAS,theTwo-BeamPhase-Lagand also theso-alled

OpenPhotoaoustiCell(OPC) [13℄will bedesribed

Thetheoretialbasisandexperimentalresultstogether

withtheperspetivesoffuture studiesinthisareawill

alsobedisussed.

II Standard Rosenwaig-Gersho

model modied for two-beam

aessment

ThePA eetanbeproduedbyanykindof

absorp-tionthatresultsinaperiodialheating. Someshemes

ofPAgenerationaredepited inFig. 1. Althoughthe

heat diusion model (ThermalPiston) [8℄ is themost

ommon mehanism responsible for the generation of

(2)

(Ther-fet)[21,22℄andthegasevolution(PhotobariEet)

[23℄mayalsoontributetoprodueadetetable

aous-tisignal.Alltheseeetsresultinapressurevariation

insidethegashamberofthephotoaoustiell.

Figure1. PossiblePAgeneratingmehanisms.

TheRosenwaig-Gersho(RG)theoretialtreatment

for the photoaousti eet (known asthermal piston

model) onsiders that the pressure inside the

photoa-ousti ell is proportional to heat generated by the

absorbed light and depends on both the geometry of

theellandthethermo-optialpropertiesofthe

inves-tigatedsample. Thetwo-beammodiedRGmodel[21℄

anbeestablishedusing thediagramshowninFig. 2.

Theone-dimensionaloupleddierentialequationsthat

desribetheheatdiusionaregivenasfollow[24℄

Figure2. RGbasedPAgeometryfor dualbeam.

2

z 2

i (z;t)

1

i

t

i

(z;t)= F

i

(z;t) (1)

with i = \g"(gas)=> (l

g + l

s

=2) < z < l

s =2;

i = \b"(baking)=> l

s

=2 < z < ( l

s =2 + l

b );

i = \s"(sample)=> l

s

=2 < z < ( l

s

=2); the term

F

i

(z;t) = (f

i (z;t)=k

i

) represents the heat soure,

be-ing f

g

(z;t) = f

b

(z;t) = 0 and f

s

(z;t) 6= 0;

i is the

thermaldiusivity,denedas

i =k

i =(C

p )

i ;k

s isthe

thermal ondutivity, C

p

is the volumetri heat

a-paity,and l

i

isalength. Boundary onditionsforthe

ontinuity of temperature and heat ow are speied

foradjaentmediumsattheinterfaeij as

i =

j

; k

i

z

i =k

j

z

j

: (2)

Thesolutionofoupledequationsis

(l

s =2;t)=

1

k

s

s Z

l

s =2

ls=2 "

(b 1)e s(z+

ls

2 )

(b+1)e s(z+

ls

2 )

(g 1)(b 1)e

s l

s

(g+1)(b+1)e

s l

s #

f(z;t)dz; (3)

d

inwhih

b= k

b a

b

k

s a

s ; g=

k

g a

g

k

s a

s

; r=(1+j)

2a

s =

s

: (4)

Theomplexparameter

i

=(1+j)a

i

isfrequeny

dependent, in whih a

i

= (!=2

i )

1=2

and

i = 1=a

i

namedasthethermaldiusionlength; andl

=1=

are the absorption oeÆient and optial absorption

Front illumination

UsingtheilluminationI(t)=I

o (1+e

j!t

),the

den-sity of absorbed power an be expressed as f(z;t) =

I

o e

(l

s =2 z)

(1+e j!t

). Solvingthe integralin Eq.

(3)

F (l s =2)= I o k s 2 s (r 2 1)

(b+1)(r 1)e

s l

s

(b 1)(r+1)e

s l

s

+2(b r)e l

s

(g+1)(b+1)e sls

(g 1)(b 1)e sls

: (5)

d

this is the RG derived equation. This temperatureis

dampedinthegaslength2

g

andtheaoustisignal

isgivenby

S F = P o (l s =2) l g g T o e jF : (6)

ThegasllingthePAellisassumedtobeanideal

gas with PV

=te, with = C

p =C

v

asthe gas

spe-iheatratio;P

0 andT

0

aretheambientpressureand

temperature. TheEq. (6)givesaomplexnumberthat

hasamodulekS

0

kand aphase

0 .

Rearillumination

In this geometry, we assume I(z) = I

o (1 + e (l s =2+z)

) and the heat soure in the form f(z) =

I

o e

(ls=2+z)

,thus Eq. (3)gives

R (l s =2)= I o k s s (r 2 1)

[(b+1)(r+1)e

s l

s

(b 1)(r 1)e s l s ℄e l s

2(b+r)

(g+1)(b+1)e sls

(g 1)(b 1)e sls

: (7)

d

Bytaking therelationof

s withl

s andl

,the

ex-pressions (5) and (7) an be simplied sine one

on-siderssomelimitingasesinthePAmodel. Theytake

into aount the thermal thikness (thermally thik

(

s <<l

s

)orthermallythin(

s >>l

s

))andthe

opa-ity(transparent(l

>>l

s

)andopaque(l

<<l

s )). In

the aseofspetrosopistudy,highly absorbing

sam-ple may presentasaturatedPAspetrum(l

s >>1),

whihonstitutesin aserioustroubleforresolvingthe

optial absorption bands. Fortunately, as opaity

de-pendsonthikness,usuallyoneandrivethePA

spe-trum to a resolved ase (

s

< 1 and l

s

< 1), by

adjustingsamplethiknessorseletingasuitable

mod-ulationfrequenyrange.

As mentioned before, for polymer samples, PAS

is partiularly useful in the near infrared (NIR) and

medium infrared(MIR),whereHydrogen bonds(C-H,

O-HandN-H)maypresentovertonesandontribution

fromtheombinationsofthestrethingandvibrational

modes.

III Open Photoaousti Cell

The Open PA Cell onsists in a ommerial eletret

mirophone that reeivesdiretlyon topaatslabof

a solid sample [25, 26℄. The mirophoneis loated in

thebakingpositionifweonsiderthegeometryofFig.

2. A metallized Teonfoil 12m thikwith aoating

minimum volume hamber with an air gap 45 m.

Pressurevariationinduesavoltageintheeletretand

foranopaquesampleitfollowsthat

P = P 0 I 0 ( g s ) 1=2 2l g T 0 k s f e j(!t 2 ) sinh( s l s ) : (8)

The limiting ases are given for two situations:

thermally thin l

s a

s

1, where pressure is

depen-dent on f 3=2

, and for thermally thik l

s a

s

1,

with signal deaying exponentially with frequeny as

S/(1=f):e b

p

f

. Fittingdatatohaveb,thermal

dif-fusivity is obtainedfrom

s = (l 2 s =b 2

). Even though

this method is designed for opaque sample, it is

a-epted that a thermally thin evaporated oatingon a

transparentsampleoraverythin metalfoilxedonit

analsobestudied withthisproedure[27℄.

IV Photoaousti methods

IV.1Depth proling: frequenysanning

Ifthe light isabsorbedin alengthl

,the only

de-tetableheatisthatinsidethethermaldiusionlength

=(=f) 1=2

, whihgivesthe \thermalskin depth"

of thesample. Varying frequeny f, one anperform

thedepthprolingofalayeredsample,Fig. 3. The

pa-rameterlassiessampleintwoategoryisthermally

thik(

s <<l

s

)orthermallythin (

s >>l

s

)and for

s =l

s

wedene the ritial frequenyf

=(=l 2

(4)

(varyingwavelength)andthermalproperties

measure-ments(xedwavelengthandvaryingfrequeny).

Figure3. Depthpenetration(!)foralayeredsample.

IV.2 Phase Resolved method

PhaseResolvedisanumerialmethod usedinPAS

[28℄ to separate a spetrum, when it is omposed by

morethanoneabsorbingomponent. Forexample,PA

signals S

A (

1

) and S

B (

2

) with bands superimposed

andbeingenteredat twonearwavelengths(

1

2 ).

In priniple, if PA signals present a phase dierene

6=0atahosenwavelengthwemaybeableto

re-solvethespetraforeahomponent. Theinstrumental

aurayrequires greaterthan5 0

. Inthis method,

PAsignalisrepresentedinaphasorialpiture,whereit

should beseparatedin twoomponents: in phaseand

inquadratureasshowninFig. 4. Forapartiular

pro-jetingangle

B

wehaveseparatedontribution from

absorbingenter B and its PA signal is maximum at

B 90

0

.

Figure4. PhasorialdiagramforPhase ResolvedPAS.

IV.3 Thermal expansion

Forauniformheating,thereisnotemperature

gra-dient on sample (see Fig. 1), thus thermal expansion

maybepresent. Solvingtheoupleddierential

equa-tions by onsidering sample poor thermal onduting

(b > r), transparent (l

> l

s

) and in the thermally

thik(

s <l

s

), thesurfaedisplaementz =l

s

T

s

is evaluated. If no heat is transferred to the gas

k

s s(0)

z

=0; sample-gasinterfae),thenthepressure

isÆP =(P

o l s =l g ) T s e j!t

[29℄andthetemperature

s ' I 0 2 s k s ( s 1) 1

(1+j!)

: (9)

BytakingthemoduleandthephaseofEq. (9)both

thethermal diusion time and thenon-radiative

re-laxationtime =(1=a s 2

)arealulated.

IV.4 Thermoelastibending

Whenaatsampleisunderanon-uniformheating,

expansion and ontration may undergoto a thermal

gradient (seeFig. 1), thus athermoelasti bending is

likelytoriseasdisplaementu

z (r;l

s

=2)[21,22℄. This

eet takes into aountthe sample's displaement in

bothdiretionu

r

radialandu

z

longitudinalorz

(nor-maltosampleplane). Thetemperature

s

isalulated

from Eq. (3)byonsidering strongsurfaeabsorption

andusingf(z

0 )= s I 0 Æ(z 0

). Itfollowsthat

s (l s =2)= s I o k s s osh[ s (z l s 2 )℄ senh( s l s ) ; (10) P th = P o T o l g Z 2 g o s (l s =2)e sz dz; (11) s

isthethermalontributionand

s

isadimensionless

absorption oeÆient and the signal\+" means front

(

F

)and\ "isforrear(

R ).

Integratingthedisplaementproduedbythefront

illuminationtheaoustipressureisobtained[22℄P

a = P o =V o R R 0 o 2 g u z (r;l s

=2)dr. Aording to

MDon-ald and Wetzel [30℄, the total pressure is then P =

P

th +P

a

. Ifthermoelastibendingispresent,onean

retrievethermalpropertiesfrom thephaseofthe

pho-toaousti signal. Inthe thermally thik ase(high f

withl

s a

s

1), thephaseofthesignalasafuntionof

themodulationfrequenyhastheform:

= 2 +artan 1 Z 1 (12)

where \ " refers to

F

and \+ " to

R , yet

Z = l a = b p

(5)

allows one to alulate thermal diusivity

s using

b=(l 2

s =

s )

1=2

.

IV.5 Two-Beam phase lagmethod

TheTwo-BeamGeometryusesthesignalsS

F (front

beam) and S

R

(rear beam), whih are obtained from

themodiedRGmodel(seeFig. 2)[31℄. Itrequiresan

air baking (g = b = 0), opaque ondition (l

s 1)

and sample must have surfae absorption ( a

s ).

The typial twobeamPA signals ratioand the phase

lag are given by(S

F =S

R )= (I

F

F =I

R

R )[osh

2

(Z)

sin 2

(Z)℄ 1=2

andtan()=tanh(Z):tan(Z),with Z =

l

s :a

s

and=(

F

R

). Oneanevaluatethe

param-eterZ fromtan()atasinglefrequeny. Thus,

ther-mal diusivity

s

is obtained using

s

= f(l

s =Z)

2

.

This model was adapted for transparent samples by

foringoptialabsorptionoeÆientatthesample

sur-fae,e.g.,usingametallioatingorathinAlfoil[27℄.

IV.6Photoaousti typial arrangements

Figure 5 shows the experimental setup for PAS,a

homemadePAspetrometer. Inthis setup,whitelight

(Halogen or Xe ar lamp, 150 W to 1000 W) passes

throughoutamonohromator(180nmto3800nm). A

mehanialhoppermodulatesthe lightandthebeam

goes to the PA ell. PA onventional ell must have

anoptialwindowtoallowradiationto reahthe

test-ingsampleplaedinside. Ahopperdriver(1Hz to3

kHz)givesthepulsereferenethatsynhronizesthePA

signal(1Vto2mV)olletedbythemirophone(20

mV/Pato50mV/Pa),whihismonitoredbyaLok-in

amplier. The PA experiment runs varying twomain

variables: wavelengthorfrequeny. Alternatively,OPC

usesthe same priniplebut, for the thermal property

evaluation, sample is plaed on top of a ommerial

eletret's mirophone. The sample onsists itself in a

sealingforthePAell. FortheOPC,usuallyitisused

axedwavelength(UV,VISorIR), alaser beamora

whitelight.

(6)

V Photoaousti spetrosopy

applied to polymers

V.1 Infrared PA depth proling

Manypapersarefoundinliteratureaboutpolymer's

studyusingFTIRwithPAdetetion. Fewofthemare

aboutpolymerizationoflatonesunderHydroxyapatite

preseneandinHydroxyalkylMetharylate,water

sol-ubleAryllamideopolymer,struturaltransformation

of PE phase in blends of oriented PE-Polypropylene

(PEPP), interfaial ties in thermoplastis olens

dur-ingstratiation[14,16,17,32,33℄,whilstmanyothers

treatthe depth proling analysis in analytialsiene

[18℄. Studies on ompositional gradientsin urethanes

and latexes, hain sission in UV exposed epoxy and

urethanelms,individualdistributionofthermoplasti

throughstratiationnearsurfaeinPPand

Ethylene-Propylenerubber,photooxidationin Styrene-Isoprene

opolymerarealsoreported. [19, 34,35, 36,37℄.

The ability of the FTIR-PAS for depth proling

analysisinlayeredmaterialshasbeendemonstratedby

Dittmar and oworkers[38℄, that use thethermal

dif-fusionlength=(=!) 1=2

asakeyparameter. They

disussed about the dependene of the PA signal and

thermaldiusionlengthinhomogeneousand

inhomoge-neouslaminarsamples. Thistehniquewasappliedon

aVinylresin(EthyleneVinylAetate-EVA,DuPont

El-vax)thatwasastontoaPPsubstrate,andtostudya

Polyamidelm(DuPontKapton)that wassandwihed

between two layers of Fluorethylene (Teon). From

phaseresolvedanalysis theyseparatedthesurfaeand

bulk ontribution for the spetra of Polyamide. The

study of the integrated intensities of the EVA-on-PP

showed to be useful in loating the layers where the

band ontributions ome from. They loated the

ar-bonyl streth at 1730 m 1

(surfae layer), the C-H

bends at 1370 m 1

and at 1450 m 1

(surfae and

bulk),C-Clattievibrationat1160m 1

(bulklayer),

the C-H strething peaks at 2918 m 1

and at 2850

m 1

.

A similar depth analysis in near infrared (NIR) in

the range between 1.0 m up to 3.0 m is presented

by Oliveira et al. [39℄. Sanning a PEslab of 1mm

thik using frequenyin therangeof 10Hz to240Hz

theyprobeddepth in therange betweenabout56 m

and 11 m. The aim was to study the loation of

CH

3

, = CH

2

and OH groups. They studied the

Low-Density PE(LDPE)through PApeak intensities

ratios of CH

3

, = CH

2

and OH groups related to

thatofmethylenegroup. Theyobservedthat these

ra-tios inreased, showingthat thelayersof PEloserto

surfaeareriherin CH

3

, =CH

2

and OH groups

asomparedto thebulk.

V.2 Visibleoptial absorption ofpolyethylene

al. [40℄ for optial absorptionmeasurementsin a new

omposite material based on PE oated. It ombines

PA and transmission tehniques. The method states

thatasolidsampleofthiknessl,reetivityR ()and

absorption oeÆient (), will presenta transmitted

beam intensity T() and the PA signal S(). It

fol-lows that T and S an be represented expliitly by

terms dependent of , i.e., T() =(a=b)exp( ():l)

and S() = a[1 exp( ():l)℄. Parameters a and

b depend on through R (). Four testing samples

were used and the layer of MnO

2

presented

thik-nesses in the range of 17 nm to 200 nm. The PA

spetraandtransmissiondatawere obtainedfrom 450

nm up to 650 nm , being Mn peaking at 450 nm.

Theauthors haveshownthat for alulating() one

have to invert the T() and S() equation and

ob-tainspeiallyan expressionto give independently

as

T

() = (1=l)lnfa()=[T():b()℄g and

S () =

(1=l)lnf1 S()=a()g 1

. Theyderiveda()andb()

by tting the plots of S() versus T() whih is

lin-ear. Thevaluesfoundshowedanexponentially

deay-ing urveof

average

()that rangesfrom 1.0 m 1

to

3:2 10 5

m 1

when goes from 450 nm to 650 nm.

Theworkalsopointedoutthatsuhahighoptial

ab-sorption oeÆient ould be useful in the liningsolar

olletors.

V.3 Thermal diusion and non-radiative

relax-ation time

AnotherPA appliation is the investigation of the

kinetisoftheiodinedopingproess[41℄. IodineDoped

Polystyrene (PST:I

2

) was prepared using an atati

PST lmthatwereastfrom5%(w/w)hloroform

so-lution overaatleanglassplate,exposingPSTlms

to vaporphaseiodine. PAS spetrumofthe PST :I

2

showedtwomainpeaksat310nmand495nm. TheRG

model ismodiedforathermallythiksample, by

in-ludingtheeetsofanitenon-radiativede-exitation

time. The dependene of thephasein thermallythik

regimeisrewrittensimilarlytothatpresentedfor

ther-mal expansion and suitable for transparentmaterials.

Thephaseisgivenby

(!)= 3

4 tan

1

(!)+tan 1

"

1

p

2!

+1

#

(13)

showing that phase depends on both and

.

Re-sultsshowed

310

greaterthan

495

butbothpresenting

a minimum 20 ms for t = 120min and 180min.

In ontrast, it was observed

310

smaller than

495

but peaking to

100 ms in the same interval of

time. This behavior for and

was explained as a

seond-orderphasetransition.

V.4 Dyeingmonitoring in PET lms

(7)

ap-be adequately dyed in order to present a better

ap-pearane [42℄. The PAS tehnique is applied to

N,N-Dimethylarylamide (DMMA) modied and

non-modiedPETlmsthathavebeendyedwithSamaron

BlueHGSdyeandwithDianixFB-EReddye. Mainly,

visibleoptialabsorptionbandsofBlueDyeat632nm

andbandsofRedDyeat442nmweremonitoredusing

thePASspetraasafuntion ofproessingparameter.

Itwasfoundthatthebestonditionfordyeingisa2%

bathonentration,15minforlmstreatmentat85 Æ

C

with the modier DMMA and after that, dyeing over

30 min at 85 Æ

C. No dierene in proessing method

wasfoundwhenbothdispersedyesareompared.

V.5 Cross-linking proess

HereitisshownthepossibilityofusingthePASto

evaluate the ross-linkingof the opolymer from

EV-Trimethoxysilane(EVS), namedCop, and thegrafted

VinylTrimethoxysilane(VTS) onLDPE,named PEg.

PAS is used for monitoring the overtone bands and

strething frequenies ombinations of the groupings

Si OH, = CH

2 , CH

3

and CH

2 CH

3 , in

thenearandmediuminfraredrange. ThroughoutPAS

spetra, using theassigned absorption bands [39℄, the

omparisonbetweenarefereneandaross-linked

sam-pleispossible. PASisusedtostudypeaksevolutionin

both,opolymerEVSandgraftedLDPE.Thesamples

were typially preparedwith 3%, 5% and 7%of

ata-lystandross-linkedat70,80and 90 0

C,respetively,

whihresultedinninesamples. ThetypialinfraredPA

spetrumisshowninFig. 6andthebestombinations

ofthepeakratiosaredepitedinFig. 7forNIR.Table

IpresentsthetabulatedbandsassignmentsforPE.

Takingtheanalysis oftheovertonebandsof OH

groups,thebetterross-linkedsamplewasfoundtobe

thatpreparedwith80 0

Candintherangeof5%to7%

ofatalyst, typially,asoneanobservebylooking at

theentralframesofFig. 7[43℄.

Phase Resolved PA method may be used in

spe-trosopy for separating spetra in sample with more

thanoneabsorbingenteratawavelengthinbothrange

NIRand MIR [38℄. In priniple,if there is phase

dif-fereneatasortedPASpeakwemaybeabletoresolve

thespetrafor eah omponent, regarding

instrumen-tal auray 5 0

. The PA spetrafor Cop and PEg

and their phases showed a phase dierene 7 0

for

Copand10 0

forthesuperimposedpeaks2and3,in

theNIRregion. ThephaseseparationforPEg770and

Cop770hasshownthatpeak2isseparatedat aphase

of50 0

,whihmeans thatits maximumisat 140 0

. On

theotherhand,peak3isseparatedataphase35 0

with

maximum at 125 0

. In the same way the peak 2 and

peak3ofCop770isalsoseparated.

TableI -TabulatedinfraredbandsassignedtoPEinNIRandMIRrange.[39℄

Wavelength Observed Assignment

nmfm 1

g Peaks [observation℄

1250f8000g 1 2ndovertone[harateristiof-CH

2

andCH

3

groups℄

1340f7460g - Probably a ombination [harateristi of terminal olen methylene

group℄

1400f7142g 2 FreeOH,1stovertone

1420f7042g 3 Combination

CH

*+[ CH

2 , CH

3

groups℄

1450 1490f6896

6711g

- BoundOH,1stovertone[superimposedto

CO

, 3rdovertone℄

1760f5681g 4 1stovertone[harateristiof CH

2

groups℄

1800 1920f5555

5208g

5 FreeOH,ombination

2020f4950g 6 Probably a ombination [harateristi of terminal olen methylene

group℄

2080 2140f4807

4672g

6 Combination

CH

*+[harateristiof terminalolen methylenegroup

O CH=CH

2

. Regionof

OH

ombinationbandof alohols℄

2150 2200f4651

4545g

6 Combination

CH

+[harateristiof(is)internalinstauration℄

2240f4464g 7 Combination

CH

+[harateristiofCH

3

groups℄

2300 2480f4347

4032g

7and8 Combination

CH

+[harateristiof CH

2

groups℄

*

CH

(8)

1200

1600

2000

2400

0

1

2

3

0

1

2

3

4

10000

8000

6000

4000

peg5%80C

7 8

1 2 3 4 5 6

No

rm

a

liz

e

d

PAS si

g

n

a

l (

a

u

)

Wavelength (nm)

7 8

Peaks

1 2 3 4 5 6

Wavelength (cm

-1

)

Figure6. PA spetrumofaross-linkedpolymerintheIR

range. GraftedPEwith5%atalystunderwatervaporat

80 Æ

C.

0

1

2

3

4

5

0

1

2

3

4

base

70

80

90

0

1

2

3

4

base

70

80

90

7 %

(a) Peak1/Peak2 Ratio

(-CH

2

e CH

3

) / (Si-OH)

7 %

(b) Peak2/Peak3 Ratio

(Si-OH) / (

ν

CH

+ -CH

2

-CH

3

)

5 %

N

o

rm

al

iz

ed P

A

S

I

n

te

nsi

ty

(

a

u)

5 %

3 %

3 %

Figure 7. PA intensity ratiosfor PEginNIR range(Cop

presentedthesameresult).

ThePAspetraintheMIRregionareshowninFig.

8andthisis anotherusefulexamplegivenforsamples

Cop770andPEg770,respetively. Forexample,Fig. 9

showsonlythephaseseparationoftheCop770, where

peaks4and 5are well dened and separable. In

on-trast, peaks 7 and 8 are very diÆult to be visually

separated in this gure. In fat, we found no phase

dierene in betweenpeaks7 and 8forbothsamples,

Cop770 and PEg770( 0 0

)as itis shown bythe

found24 0

forCop770(Fig. 9) and27 0

for

PEg770(gure notshown).

1600

1800

2000

2200

2400

2600

0

5

10

15

20

0

5

10

15

20

pk8

pk7

Wavelength(nm)

PE

g

770

pk8

pk7

pk5

pk5

pk4

pk4

PA

S S

ignal

(

au)

cop770

Figure8. Spetralsignalfor aross-linkedpolymerat7%

atalystand70 0

CinMIRrange.

1600

1800

2000

2200

2400

2600

-5

0

5

10

15

20

-5

0

5

10

15

20

-5

0

5

10

15

20

Cop770

peak 4 (-CH

2

)

33

0

43

0

23

0

13

0

Wavelength (nm)

peak 5 (Si-OH)

87

0

57

0

47

0

37

0

PA

S S

ig

n

a

l (

a

u)

peak 5 = 127

0

peak 4 = 103

0

Figure9. Examplesofnumerialphaseseparationforpeaks

4and5(resolved)andforpeaks7and8(notresolved).Note

thatpeaks7and8aresimultaneous(nophasedierene).

Makingthenumerialanalysis,weare ableto

(9)

of the methylene CH

2

. As expeted, the PA

analy-sisshowednoseparationforthestrethingombination

CH

thatisattributedto CH

2

and CH

3

overtones.

This observation is exemplied by Fig. 9 whilst the

overallphaseseparationsofthesesamplesareshownin

thephasorialdiagram,in Fig. 10a,forPEg770,andin

Fig. 10b,forCop770.

(a)

(b)

Figure 10. Phasorialdiagramof separatedomponentsfor

bothrangeNIRandMIR.a)ForPEg770,andb)Cop770.

VI Thermal diusivity

measure-ments

VI.1 Polymers foilsand resins

Many researhers in the material siene eld are

interested in thermal parameters,speially in thermal

diusivity() measurements[44℄. Fromonean

a-ess the thermalondutivity =C

p

, also thermal

diusivitymayreetindireteetsinthesolidlattie

thatarerelatedtostruturalhanges,likerystallinity,

dopingeets andproessingonditions.

Thermaldiusivitybasedpolymerfoilsstudieshave

been reported by several papers [27, 26℄. For

in-Polyester with dierent liquid baking [46℄, dierent

onduting foils like Polypyrrole (PPY) and

Polyani-line [47, 48, 49℄, temperature dependene of thermal

parametersin Polyvinylidene(PVDF) lms[50℄, olor

ellophanelms[51℄,arefoundinliterature. Alsomany

othersmethods basedon atwo-layeredpolymer, suh

asPolymethylMetharylate(PMMA)onstainlesssteel

andMylaronglassplate[52,53℄,orbasedon

multilay-eredpolymer[54,55℄are published. Partiularly,they

alled attention to thegreat inuene of thermal

on-dutivityratioontheeetivethermaldiusivityofthe

two-layersystem[53℄.

PhaseLag PA method and Thermoelastibending

have been exploited by Leite [27℄ and the OPC have

beendemonstratedbyPerondi[26℄forprobingthe

teh-nique for the measurement of thermal diusivity of a

set of polymer foils. Leite tabulated data for Teon,

Poly Vinyl Chloride (PVC), Cellulose Aetate (AA),

Polypropylene (PP) and LDPE by using front phase

datatting. Perondi presenteddata for LDPE,

High-Density Polyethylene(HDPE)andPP,basedonOPC

measurements. TableII showsalittlesurveyof

prop-ertiesforsomepolymers.

In addition, PA method allows the study of

ross-linking ofLDPE and someEpoxyResins. Cella et all

[56℄havestudied the LDPEafter beingswollenintoa

Diumyl Peroxide(Di-Cup) but the ross-linking

pro-esswasfollowedbymeansofthermaldiusivity

show-ingthatthis parameterinreaseswithimmersiontime

of the order of 10 hours, saturating for time up to

30 h.ours Also d'Almeida et al. [57, 58℄ showed that

thermaldiusivityis verysensitive formonitoringthe

hangesinepoxy-amine,induedonthe

maromoleu-larnetwork asafuntion of hardener/resinratio.

Ex-tendingthiswork,d'Almeidareportedthatthermal

dif-fusivityis suitableto monitorthe fraturebehaviorof

theepoxyresinunderimpatonditions,whendierent

hardenersareused.

VI.2 Modied and Dyed Polyethylene T

ereph-thalate

ThePAspetrosopyhasbeenusedto monitorthe

proessing variable in dyeing ommerial PET lms

modied by DMMA [59℄. The net eets in the

mi-rostruturewereaompaniedusingtheOPCPAell,

inwhihthermaldiusivityweremeasuredforaset of

sample, with dierent dyeing onditions (dyeing time

and temperature) [60℄. In the study presented by

Olenkaet al. [60, 61℄ itwasused a100m thik foils

ofPET lms. Themain resultshavepointed that the

PET lm improved the heat ondution power after

dyedattemperaturebelowglasstransition(T <70 0

C)

when time of dyeing is keptat 30 min. On the other

hand, for the set of sample dyed at higher

tempera-ture(T > 70 0

C) the results showed that the thermal

(10)

TableII-TabulatedphysialpropertiesofsomepolymersretrievedusingPA.

Polymer PhysialProperties, Referene

(10 3

m 2

=s)

1-RedPolyester 1:3(>800m 1

) DoubleLayerModel[55℄

ontransparentPS (10m 1

)

2-PETPdrawnfoils Rearphasedependene[45℄

ls~19mto 18m 0:92==>0:75

ls~30mto 31m 0:62==>0:67

3-Mylar/Glasse 0:45<

eff

<0:82 TwoLayerSystemModel[53℄

depends onk

1 =k

2

4-Polyester 0:9 BakingliquidMethod[46℄

5-Teon 1:4 PhaseLagandBendingMethod[27℄

PVC 0:6

AA 0:8

PP 0:7

LDPE 1:6

6-HDPE 1:7 OPC-Rearphasedependene[26℄

7-PET 1:02 OPC-Rearsignaldependene[61℄

DMMAtreated 1:2<<1:3

BlueDisperseDyed 1:4<<2:2

8-PMMAredlm 0:6 OPConguration[62℄

undereletrield

9-IodinedopedPST 20ms, OPC-Rearphasedependene[41℄

dopingtime(min)

min

(180)10ms

average

60ms

peak

(180)80ms

1.0

1.5

2.0

2.5

0

60

120

180

240

300

360

1.0

1.5

2.0

2.5

virgin

3

2

5

4

7

6

(a)

Samples dyed at 60

0

C

TR85C

TR60C

T

h

er

m

al di

ff

u

siv

it

y

(10

-3

cm

2

/s

)

virgin

3

2

10

11

9

8

(b)

Samples dyed at 85

0

C

TR85C

TR60C

Total dipping time (min)

Figure11. Thermaldiusivityresultsfor treatedPETasa

funtionoftimeofdyeing. (a)Samplesdyedat60 o

Cand

treatedatboth60 o

Cand85 o

Cand;(b)Samplesdyedat

85 o

Candtreatedatboth60 o

Cand85 o

C.Linesareguides

totheeyes.

ThermaldiusivitiesareplottedinFig. 11against

dye-ing time. Thermal diusivity inreases higherfor the

set dyedabovePETglasstransition,frame (b),

show-ingthat itdereasesforlongtermdyeing(6hours

typ-belowglasstransition, frame(b), itpresenteda

dier-entbehaviorwherethermaldiusivityinreasesallthe

wayastimegoes,but evensoitis notlinear. A

sum-maryoftheseresultsispresentedinTableIII.

The alulated thermal ondutivity is plotted

against integrated x-rayintensity areain Fig. 12. It

showsalinearbehaviorforsamplestreatedat60 0

C.In

ontrast,samplestreatedat85 0

Cshowedanerrant

be-haviorthat issuggested asa miro-struturalhanges

takingplaein thelattie.

VII Final Remarks

PAS havebeenshowntobeaveryusefuloptial

teh-nique for studying optial and thermal properties of

polymers. Partiularly when depth prole analysis is

needed,thefrequenydomainallowsonetostudy

prop-ertiesoflayeredsampleandseparatelayerontribution.

ApromisingmethodisthephaseresolvedPASthatan

giveusinsightaboutsuperimposedabsorptionbandsin

the NIRand MIR regionthat is veryrih in overtone

and ombinations of vibrational modes, usually found

in most polymer, opolymer, blends and resins.

Fi-nally,PAmethodisveryhelpfulforthermalparameters

ahievement,andthePhaseLagmethodsandtheOPC

haveproventobeworthyforderivingthermal

diusiv-ity for at and transparent polymer, suh as slabs or

(11)

TableIII - Resultsofphysial properties foreahPET treated15minwith DMMAand dyebathonentration2

% Mol:L 1

.TR=temperatureoftreatment,DY=temperatureofdyeing,DT=timeofdyeing.

Sample b

s

p

k

s

(10 3

m 2

=s) (g=m 3

) (J=gK) (mW=mK)

0:005 0:04 0:6

1 VirginPET -0.554 1.020.14 1.386 1.32 1.9

2 TR60 -0.510 1.210.14 1.345 1.24 2.0

3 TR85 -0.492 1.300.15 1.357 1.23 2.2

4 TR60DY60DT30 -0.468 1.430.15 1.368 1.23 2.4

5 TR85DY60DT30 -0.455 1.520.16 1.368 1.27 2.6

6 TR60DY60DT6 -0.415 1.820.19 1.368 1.32 3.3

7 TR85DY60DT6 -0.395 2.020.21 1.387 1.26 3.5

8 TR60DY85DT30 -0.379 2.180.25 1.368 1.20 3.6

9 TR85DY85DT30 -0.378 2.200.27 1.368 1.21 3.6

10 TR60DY85DT6 -0.382 2.140.14 1.368 1.20 3.5

11 TR85DY85DT6 -0.411 1.860.19 1.357 1.19 3.0

Figure 12. Calulated thermalondutivity for dyedPET

lmsas afuntionofx-rayintegratedpeakarea. Theline

pointstothetendenyofinreasingthethermal

ondutiv-itywithrystallinity.

Aknowledgments

Wearein debt withtheBrazilianAgenies Capes,

CNPq,PADCTandFunda~aoArauariaforthe

nan-ialsupportofourresearhgroup.

Referenes

[2℄ A.C.Boara,D.Fournier,andJ.Badoz,Appl. Phys.

Lett.36,130(1980).

[3℄ A.Mandelis,Chem.Phys.Lett.108,388(1984).

[4℄ H.Coufal,Appl.Phys.Lett.44,59(1984).

[5℄ W.Jaksonand N.M.Amer,J. Appl.Phys.51,3343

(1980).

[6℄ J.Mura, L.C.M. Miranda, M.L. Baesso, A.C. Bento,

andA.F.Rubira,J.Appl.Pol.Si.82,2669(2001).

[7℄ S.O.Kanstad, P.E. Nordal, Powder Tehnol. 22, 133

(1978).

[8℄ A.Rosenwaig andA. Gersho, J. Appl. Phys.47, 64

(1976).

[9℄ M.D.daSilva,I.N.Bandeira,andL.C.M.Miranda,J.

Phys.E:Si.Instrum.20,1476(1987).

[10℄ A.Rosenwaig,PhotoaoustiandPhotoaousti

Spe-trosopy, Wiley,New York,1980.

[11℄ C.K.N.PatelandA.C.Tam,Rev.Mod.Phys.53,517

(1981).

[12℄ K. Klein, J. Pelzl, and H. Futterer, Photoaousti,

Priniples and Appliations, eds. E. Lusher, P.

Ko-rpiun, H. J. Coufal and R. Tilgner, Viewg,

Braun-shweig,1982.

[13℄ H.VargasandL.C.M.Miranda,Photoaoustiand

Re-lated Photothermal Tehniques; Phys. Rep. 161, 43

(1988).

[14℄ E.Helwig,B.Sandner,U.Gropp,F.Vogt,S.Wartwig,

andS.Henning,Biomaterials22,2695 (2001).

[15℄ L.Gonon,J.Mallegol, S.Commereu,and V.Verney

,Vibrat.Spetr.26,43(2001).

[16℄ M.B.Hoking,K.A.Klimhuk,and S.Lowen, J.Pol.

Si.A-Pol.Chem.39,1960(2001).

[17℄ P.Shmidt,J. Baldrian, J.Sudla, and J.Dybal, M.

Raab,K.J.Eihhorn,Polymer,42, 5325(2001).

(12)

[19℄ M.W. Urban, Progr. in Organ. Coatings, 40, 195

(2000).

[20℄ F.A.MDonald,J.Opt.So.Am.70,555(1980).

[21℄ P.Charpentier,F.Lepoutre,andL.Bertrand,J.Appl.

Phys.53,608(1982).

[22℄ G. Rousset, F. Lepoutre, and L. Bertrand, J. Appl.

Phys.54,2383(1983).

[23℄ P. Korpiun and B. Buhner, Appl. Phys. B30,

121(1983).

[24℄ A.C.Bento,MasterDissertation;presentedto

IFGW-UNICAMP,Campinas-SP,Brazil, 1987.

[25℄ G.M.Sessler,J.Aoust.So.Am.35,1354(1963).

[26℄ L.F.PerondiandL.C.M.Miranda,J.Appl.Phys.62,

2955(1987).

[27℄ N.F.Leite,N.Cella, H.Vargas,and L.C.M.Miranda,

J.Appl. Phys.61,3025(1987).

[28℄ C.L.Cesar, H.Vargas, J.Pelzl,andL.C.M. Miranda,

J.Appl. Phys.55,3460(1984).

[29℄ M.L. Baesso, Dotoral Thesis presented to

IFGW-UNICAMP,Campinas-SP,Brazil, 1990.

[30℄ F.A. MDonald, G.C. Wetsel Jr., J. Appl. Phys. 49,

2313(1978).

[31℄ O.PessoaJr.,C.L.Cesar, N.A.Patel,H.Vargas,C.C.

Chizoni,andL.C.M.Miranda,J.Appl.Phys.59,1316

(1986).

[32℄ S.Kammer,K.Albinsky,B.Sandner,andS.Wartewig,

Polymer40,1131(1999).

[33℄ J.M.Stegge,M.W.Urban,Polymer42,5479 (2001).

[34℄ B.R.Kiland, M.W. Urban, and R.A.Ryntz, Polymer

42,337(2001).

[35℄ H.Kim,M.W. Urban,Langmuir16,5382(2000).

[36℄ B.R.Kiland, M.W. Urban, and R.A.Ryntz, Polymer

41,1597 (2000).

[37℄ L. Gonon, O.J. Vasseur, and J.L. Gardette, Appl.

Spetr.53,157(1999).

[38℄ R.M. Dittmar, J.L. Chao, and R.M. Palmer, Appl.

Spetr.45,1104(1991).

[39℄ M.G.Oliveira,O.PessoaJr.,H.Vargas,andF.

Galem-bek,J.Appl.Pol. Si.35,1791(1988).

[40℄ C.L.Cesar, C.A.S. Lima,N.F.Leite,H. Vargas, A.F.

Rubira, and F. Galembek, J. Appl. Phys. 57, 4431

(1985).

[41℄ A.Torres-Filho,N.F.Leite,L.C.M.Miranda,N.Cella,

andH.Vargas,J.Appl.Phys.66,97(1989).

[42℄ L.Olenka,

E.N.daSilva,W.L.F.dosSantos,A.F.

Ru-bira,E.C.Muniz,A.N.Medina,M.L.Baesso,andA.C.

Bento,TheAnalyst,127,300(2002).

[43℄ D.T. Dias, Master Dissertation presented to

DFI-UEM, Maringa-PR, Brazil, 2001. D.T. Dias, M.F.

Porto, A. F.Rubira, A.N. Medina,M.L. Baesso, and

A.C.Bento,submittedtoJ.Appl.Pol.Si.2002.

[44℄ L.R. Touloukian, R.W. Powell, C.Y. Ho, and M. C.

Niolasu,ThermalDiusivity,vol.10,IFI/PLENUM,

NewYork(1973).

[45℄ P. Korpiun, B.Merte, G.Fritsh,R. Tilgner, and E.

Lusher,Coll.&Pol.Si.261,312(1983).

[46℄ A. Lahaineand P.Poulet,Appl. Phys.Lett. 45,953

(1984).

[47℄ A.C.R.daCostaandA.F.Siqueira,J.Appl.Phys.80,

5579(1996).

[48℄ W.L.B. Mello and R.M. Faria, Appl. Phys.Lett. 67,

3892(1996).

[49℄ J.E. deAlbuquerque, W.L.B.Mello, and R.M. Faria,

J.Appl.Pol.Si.B-Pol.Phys.38,1294(2000).

[50℄ B.Bonno,J.L.Laporte,andR.T.d'Leon,Meas.Si.

Tehnol.12,671(2001).

[51℄ A.Yoshida,H.Nogami,T.Kurita,andS.Washio,

An-nal.Si.17,s154(2001).

[52℄ T. Tominaga, K. Ito, Jap. J. Appl. Phys. 27, 2392

(1988).

[53℄ A.M.Mansanares,A.C.Bento,H. Vargas,N.F.Leite,

andL.C.M.Miranda,Phys.Rev.B42,4477(1990).

[54℄ P.HelanderandI.Lundstrom,J.Appl.Phys.52,1146

(1981).

[55℄ M.Morita,Jap.J.Appl.Phys.20,835(1981).

[56℄ N.Cella,H.Vargas,E.Galembek,F.Galembek,and

L.C.M. Miranda,J.Appl.Pol.Si.-C,27,313(1989).

[57℄ J.R.M. d 'Almeida, N. Cella, S.N. Monteiro, and

L.C.M. Miranda,J.Appl.Pol.Si.69,1335 (1998).

[58℄ J.R.M.d'AlmeidaandN.Cella,J.Appl.Pol.Si.77,

2486(2000).

[59℄ W.L.F.dosSantos,M.F.Porto,E.C.Muniz,L.Olenka,

M.L. Baesso, A.C. Bento, and A.F. Rubira, J. Appl.

Pol.Si.77,289(2000).

[60℄ L. Olenka,

E. N. da Silva , W.L.F. dos Santos, A.F.

Rubira,E.C.Muniz,A.N.Medina,L.P.Cardoso,M.L.

Baesso, L.C.M.Miranda,andA.C.Bento,Annal.Si.

17,s387(2001).

[61℄ L.Olenka,

E.N.daSilva,W.L.F.dosSantos,E.C.

Mu-niz, A.F.Rubira,A.N.Medina,L.P.Cardoso, L.C.M.

Miranda, M.L. Baesso, and A.C. Bento, J. Phys. D:

Appl.Phys.34,2248 (2001).

[62℄ H. Kobayahi, K.Yoshida,M. Kubo,T.Tsukada, M.

Hosawa, and M. Sato, J. Chem. Eng. Japan 33, 47

Imagem

Figure 2. RG based PA geometry for dual beam.
Figure 3. Depth penetration (!) for a layered sample.
Figure 5 shows the experimental setup for PAS, a
Table I - T abulated infrared bands assigned to PE in NIR and MIR range.[39℄
+5

Referências

Documentos relacionados

thermal diusivity and the optial absorption oeÆient of one side dyed polymer foils..

these ratios... Normalized PAS intensity in the NIR range for the peaks ratio a) Peak1/Peak2 of PEg samples; b) Peak2/Peak3.

(I) as a funtion of the frequeny (f ) it was possible to ev aluate a harateristi time () in order.. of magnitude as a funtion of the temperature

In this devie the hole transport layer is obtained using a thin lm of 1-(3-methylphenyl)-.. 1,2,3,4 tetrahydroquinoline-6-arboxyaldehyde-1,1'-diphenylhydrazone (MTCD), while

point (whih ours for P/D 13 for long exible

for prodution of thermotropi liquid rystalsC. The hiral fragment synthesised was

we onsider the mehanism of photoalignment of liquid rystals both in the bulk and at the surfae.. by a photosensitive

of phase biaxiality is well based on moleular biaxial-.. ity but not neessarily on shape biaxiality