• Nenhum resultado encontrado

Braz. J. Phys. vol.32 número2B

N/A
N/A
Protected

Academic year: 2018

Share "Braz. J. Phys. vol.32 número2B"

Copied!
9
0
0

Texto

(1)

Thermal Lens Temperature Sanning for

Quantitative Measurements in Complex Fluids

J. H. Rohling,J. Mura, J. R. D. Pereira, A. J.Palangana,

A. N.Medina, A. C. Bento,M. L. Baesso,

Departamentode Fsia, UniversidadeEstadualde Maringa,

Av. Colombo5790,CEP87020-900, Maringa,PR,Brazil

and L. C. M. Miranda

InstitutoNaionalde PesquisasEspaiais,CEP12227,S^aoJose dosCampos,SP,Brazil

Reeivedon12Deember,2001

Inthis workthermallens spetrometryis appliedto investigate the thermo-optial properties of

omplexuidsasafuntionofthetemperature. Themethodisappliedinpoly(vinylhloride),in

polyarbonate andinlyotropiliquidrystalsas thetestingsamples. Thefous ofthedisussion

will be in the temperature range where the phase transitions our. The perspetive of future

studiesinthisareawillbedisussed.

I Introdution

Theultimategoalin thestudyof thethermaland

op-tial properties of omplexuids asa funtion of the

temperatureisthedetermination oftheroleplayedby

these parametersin the material phase transitions

[1-14℄. It is well known that thermal ondutivity (K),

thermal diusivity (D) and the oeÆient of

temper-ature of the refrative index (dn=dT) present strong

variation in their valueswhen the temperature of the

sampleislosetotheregionwherethephasetransition

isexpetedtoours[1-7℄.Ontheotherhand,itis

re-ognizedthatthepreisedeterminationofphase

transi-tiontemperatureisstillanexperimentalhallengethat

needs to be aomplished. Conventional alorimetri

methods demands the use of a referene sample and

thereforeatemperaturelagbetweenthetestedsample

and thereferenemaytakeplae. Thisdoesnotallow

toloatethephasetransitiontemperaturepreisely

[1-5,12,13℄.

Inthelasttwodeadeswehavewitnessedthe

devel-opment of anumberof tehniquesfor non-destrutive

haraterizationof thethermal,optial andstrutural

properties of materials based upon the photothermal

tehniques [15, 16℄. Despite this growing interestand

the importane oftheappliations of thesetehniques

to theomplexuidarea[17-21℄,sofarthe

photother-mal measurements have been arried out mostly at

near room temperature onditions. A restrited

num-berofworkshasappliedphotothermalmethodsfor

dif-ferent temperature studies in the omplexuids area.

ri method to investigate the ritial behavior of the

thermal parameters lose to the liquid rystal phase

transitions. Theirexperimentshavebeenperformedin

thermotropi liquid rystal in the temperature range

between 35 0

C and 100 0

C : Reently, we have

intro-dued Thermal Lens Spetrometry (TLS) to measure

the thermo-optial properties of omplex uids as a

funtion of the temperature [3-11℄. The experiments

have been performed in polymer samples, polyvinyl

hlorideandpolyarbonate,andin pureandferrouid

dopedlyotropiliquidrystals. Inthesemeasurements

thethermo-optialpropertiesasafuntionofthe

tem-perature have been obtained. TLS is a very sensitive

tehniquethathasbeenprovedtobeavaluablemethod

for investigating not only the omplete thermal and

spetrosopipropertiesoftransparentmaterials,suh

as,glasses[22-33℄,liquidrystals[9-11,18℄andpolymers

[3-5,34℄,butalsoforthesensitivemonitoringofthe

ki-netisoffasthemialreations[35℄,perolationin

mi-roemulsions[36℄,anddynamisofwater-surfatant

in-teration[37℄. Thistehniquehasthespeialabilityof

beingaremotemethodandduetothefatthatthe

ne-essarytemperaturetoobtainthethermallenssignalis

lowerthan10 2

C,itallowsanedeterminationofthe

experimentalparametersverylosetothesamplephase

transition. OneadditionaladvantageoftheTLS,

espe-iallyfor anisotropisamples, is the determination of

theabsolutevalueofdn=dTforeahsampleorientation

independently. Thedeterminationofdn=dT asa

fun-tionof the temperature and sampleorientationis

im-portantbeause it ontainsinformation about sample

(2)

produeeitherlaserbeamself-fousinganddefousing,

dependingon thesample orientationand temperature

andalsothelaserbeampolarization[9,10,11℄.

Inthis work wedisuss theuseofthethermallens

(TL) tehnique for the measurements of the

thermo-optial properties of polymersand pure and ferrouid

dopedlyotropiliquidrystalsasafuntionof

temper-ature. Thefous ofthe disussion will be in the

tem-peraturerangein whihthe phasetransitionsof these

materialsour.

II Thermal lens Spetrometry

ThermalLensSpetrometrywasrstreportedin1964

by Gordan et al. [22℄. Sine then the tehnique has

proved to be a valuablemethod to study transparent

materials. TheTLeetisinduedwhenalaserbeam

passes through amaterial and the absorbedenergy is

onvertedintoheat. Theonsequenthangein the

op-tial path length indued by a temperature rise will

produe alenslike optial element at the sample, the

so alled thermal lens eet. The propagation of a

probe beam through the TL will then be aeted

re-sulting in a spreadingorfousing of thebeam enter.

Bymeasuringthisbeamenter intensityvariation,the

thermo-optial properties of the sample an be

deter-mined. Themode mismathed onguration hasbeen

showntobethemostsensitiveexperimental setupfor

theTLmeasurements. Thisarrangementusestwolaser

Figure 1. Probe beam and exitation beamin the mode

mismathedTLonguration.

Thetheoretialtreatmentofthethermallenseet

takesintoaountthespherialaberrationofthe

ther-mallensandthewholeoptiallengthhangewith

tem-perature is onsidered. The rst step in the

develop-mentofthemodelistoonsidertheheatsoureprole,

Q(r), induedby thelaserbeam. Q(r) isproportional

totheGaussianintensityprolewhihanbeexpressed

asI

e

(r)=(2P

e =!

2

e

)exp( 2r 2

=! 2

e

),inwhihP

e isthe

exitation beam power and !

e

is the exitation beam

waistat thesampleposition. Thesolutionoftheheat

ondution equation depends onthe employed

bound-aryonditions. Shenetal. [38,39℄developedthe

inni-tiveaberrantmodelforthemodemismathed

ongu-ration. UsingtheonditionsT(r;0)=0(r<1)and

T(1;t) = 0(t > 0); the temporal evolution of the

temperatureprole4T(r;t)induedbytheTLin the

sampleisgivenby[22,38℄:

4T(r;t)= 2P

e A

e

! 2

e Z

t

0

1

1+(t 0

=2t

)

exp

2r 2

=! 2

e

1+(2t 0

=t

)

dt 0

(1)

d

InEq. (1)isthedensity,thespeiheat,A

e the

op-tialabsorptionoeÆientattheexitationbeam

wave-lengthandt

theharateristithermaltimeonstant,

denedas:

t

=

! 2

e

4D ;D=

K

(2)

whereDisthethermaldiusivityandKisthethermal

ondutivity.

This temperature rise, whih arries a Gaussian

prole, indues a slight distortion in the probe beam

wavefrontthatanbeassoiatedwiththeoptialpath

lengthhangewithrespetto theaxisas:

p

2 =l

0 (

ds

dT )

p

[T(r;t) T(0;t)℄ (3)

in whih is the phaseshift induedwhen theprobe

beam passes through the TL,

p

is the probe beam

wavelength, l

0

isthesamplethiknessand(ds=dT)

p is

thetemperatureoeÆientoftheoptiallengthat the

probebeamwavelength.

Finally, usingFresnelldirationtheory,theprobe

beam intensity at the detetor plane an be written

as an analytial expression for absolute

determina-tionof thethermo-optialpropertiesofthe sample,as

(3)

I( t)=I( 0) 2

4

1

2 tan

1 0

2mV

(1+2m) 2

+V 2

(t

=2t)+1+2m+V 2

1

A 3

5 2

(4)

Where

= P

e A

e l

0

K

p

ds

dT

p ;V =

Z

1

Z

;m=

!

p

!

e

2

(5)

d

In Eq. (4) I(t) is the temporal dependene of the

probe laser beam at the detetor, I(0) is the initial

value of I(t), is the thermally indued phase shift

of the probe beam after itspassing through the

sam-ple, !

p

is theprobe beam spot size at thesample, Z

is the onfoal distane of the probe beam, Z

1 is the

distanefromtheprobebeamwaisttothesample. We

shouldmentionthattheparameterds=dTdesribesthe

whole optial pathlengthhange induedbythe

exi-tation beam, whih means that for a solid materials

it depends on several mehanisms suh as the sample

bulging duringtheilluminationandalsoonthe

stress-optialoeÆient. Intheaseofliquidsamplewehave

ds=dT =dn=dT:

III Experimental

TL measurements an be performed for both

time-resolved and steady state mode. The time-resolved

methodpermitsthemeasurementofthedevelopmentof

thethermallensinashortperiodoftime,andthe

ad-vantageofthis proedure whenompared with steady

statemodeisthatitallowstomeasurethesample

ther-maldiusivity. Themodemismathedexperimentalset

up fortime resolvedmeasurementis shown in Fig. 2.

Theexperimentisperformedinthefollowingway: rst,

the probebeamis aligned,using mirror5, in orderto

haveits enter passingthroughthepinhole positioned

infrontofthedetetor;afterthatusingmirror2the

ex-itationbeamisusedtoinduethethermallensinthe

entralpartoftheprobebeam,induingaonsequent

hange in its intensity in the detetor, photodiode 2.

Thissignalvariationisreordedbytheosillosopeand

the data thus obtainedis proessed usingleast-square

urvetting. Inthetimeresolvedmeasurements,and

t

arestraightforwardlyobtainedfromthettingofthe

experimentallyobservedproleofthedeveloping

ther-mal lensto Eq. (4). Inorderto validate andevaluate

the sensitivity of the proposed method we have also

arried out omplementary measurements of

dieren-theevaluationoftheglasstransitiontemperature.

The poly (vinyl hloride) (PVC) lm used was

a 200 m thik with 12 mm diameter disks. The

PVClmswere preparedusing a20;000molarweight

PVC powder (Aldrih). The lms were ast from a

6:5%(w/w)1,2-di-hloroethanesolution, at room

tem-perature, over a at lean glass substrate. The TL

experiments were performedin thetemperaturerange

from 22 Æ

C up to 70 Æ

C. For the polyarbonate, the

tested sample used onsisted of a 1.4 mm thik, 12

mm diameter diss of polysafe poly(arbonate)

man-ufaturedbyWilsonSafetyProdutsCo. The

temper-aturerangefortheTLexperimentswasfrom22 Æ

Cup

to170 Æ

C.

Figure2. TLexperimentalsetup.

Thepureandferrouiddopedlyotropiliquid

rys-tal (LLC) samples were prepared with the following

omposition: potassium laurate (29.4 wt%), deanol

(4)

aquartzuvette0.5mmthik. Usingmagnetieldthe

LLC diretor wasaligned in parallel orperpendiular

tothesidewalls. Afterthat,thesamplewaspositioned

insideahotstage(MK200)devie. Themeasurements

wereperformedasafuntionofthetemperatureinthe

rangefrom13 Æ

Cupto54 Æ

C.

IV Thermal lens in polymers

IV.1 Room temperature study

Polymers are arboni ompounds whih, like

glasses,presenttherequiredpropertiestobeusedas

op-tial materials. Whensuitablefor optialappliations

the lower ost of fabriation of these materials make

them advantageous when ompared to optial glasses.

Therefore,itisimportanttodeterminethethermallens

eet in polymers sine it is related to the hange in

theoptialpathlengthwithtemperature,ds=dT. The

knowledgeofthisparameterisimportantwhenthe

ma-terialisusedin optialsystem.

Fig. 3showsatypialTLsignalfor thePVC

sam-pleatroomtemperature. Thesolidlineorrespondsto

thedatattingofEq. (4)totheTLexperimentaldata

leaving and t

as adjustable parameters. The

val-ues we haveobtainedwere =(0:07910:0009)and

t

=(5:500:06)ms. Theorrespondingvalueofthe

thermaldiusivitywasD=(1:290:03)10 3

m 2

/s.

Thisvalueagreewiththatreportedintheliteraturefor

PVCatroomtemperature[7℄,namely,1:210 3

m 2

/s.

0

5

10

15

20

25

30

0.89

0.90

0.91

0.92

0.93

T

h

er

m

al le

ns sig

na

l (

m

V

)

Time (ms)

Figure3. Typialtransient TLsignal for PVC samplefor

apumpbeampowerof75mWatroomtemperature. The

solidlineorrespondstothedatattingtoEq. (4).

Wehaveperformedadditionalmeasurementsof

spe-i heat and taken the mass density from the

liter-1.6mW/mK.

Having the thermal ondutivity, the measured

valueof=P =(1:1W 1

),A

e

=(0:1m 1

),k=(1:87

mW/mK),

p

= (6:32810 5

m) and using Eq.

(5) the value of ds=dT was found to be ds=dT =

( 0:6210 4

K 1

): For solid sample, the parameter

ds=dT determinedbyTLmeasurementsanbewritten

as[23℄

ds

dT =(n

0

1)(1+)

T +

dn

dT +

1

4 n

3

0 Y

T (q

11 +q

12 );

(6)

inwhih

T

isthelinearthermalexpansionoeÆient,

isthePoissonratio,Y istheYoungmodulus,q

11 and

q

12

arethestressoptioeÆients,paralleland

perpen-diularto thediretion ofthelaserbeampropagation.

Negletingthelasttermoftheaboveequation,that

or-responds to about10% of the total ds=dT, and using

n =1:546, dn=dT = 1:1410 4

K 1

, and = 0:38

[7℄,weanestimatethevalueof

T

ofourPVCsample

as:

T

=6:910 5

K 1

. Thisresultsagreeswiththat

from theliterature[7℄,whihis: (6:810 5

K 1

). For

polyarbonate,thesameproedurewasadoptedandwe

foundds=dT = 0:2110 4

K 1

:

IV.2 Glass transition analysis

Thesameproedure was adopted to arryout the

experimentsasafuntion ofthetemperature. Figures

4and5showtheresultingtemperaturedependenewe

obtainedforthethermaldiusivityandthenormalized

thermallenssignal,;ofthePVCsample,respetively.

35

40

45

50

55

60

65

70

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

T

her

m

a

l D

if

fu

siv

ity

(

10

-3

cm

2

/s

)

Temperature (

o

C )

(5)

25 30 35 40 45 50 55 60 65 70

1.0

1.5

2.0

2.5

3.0

3.5

4.0

θ

/ P

(

W

-1

)

Temperature (

o

C )

Figure5.ThermallenssignalamplitudeparameterofPVC

asafuntionofthetemperature.

To better understand thetemperaturedependene

ofbothDand=P,wehavealsoarriedoutDSC

mea-surements. InFig. 6awepresentatypialDSC urve

for our sample. This result indiates that the glass

transition region of our PVCsample extendsfrom 50

Æ

Ctoabout67 Æ

Cwithapeakat62.5 Æ

C.FromFigs. 4

and5weobservethatbothD and=P showamarked

hange in their temperature dependene in this glass

transition region. Between 50 Æ

C to about 67 Æ

C, D

dereasesbyafatorofabout2at thesametimethat

=P experienesaninreaseoftheorderof3.5.

Thesomewhatomplextemperaturedependeneof

=P maybebetterunderstoodbylookingatthe

tem-perature derivative of the solid line in Fig. 5, shown

in Fig. 6b, whih was obtained by using a

ombina-tionofaLorentzianfuntionforthetemperaturerange

between22 Æ

C upto 60 Æ

Candalogistifuntion

(Y =A

2 +

(A

1 A

2 )

1+( x

x0 )

)

[4℄ for the temperatures above60 Æ

C. It tells us that,

oninreasingthetemperature,(1=)(d=dT)inreases,

goesthroughapeakaround56 Æ

C,thendereasesvery

sharplytoaminimumatroughly61 Æ

C,tonallyreah

a maximum at 64 Æ

C, as shown in the upper urve.

TheomparisonbetweenthetwoplotsinFig. 6issuh

thattherstpeakinurve(b),whihoursat56 Æ

C,

orrespondstothebeginningof theglass transitionas

determinedbytheDSCurve,whereastheseondpeak

of urve(b) orresponds to theinetion point of the

DSCurvebeforereahingitsminimumat62.5 Æ

C.We

-0.08

-0.04

0.00

0.04

0.08

20

30

40

50

60

70

80

-0.4

-0.2

0.0

0.2

0.4

(1/

θ

)d

θ

/dT

b

θ

'/

θ

(1

0

-5

K

-1

)

64

55.2

DSC a

DSC (

m

W

)

Temperature (

0

C)

Figure6. Temperaturederivative ofthe TLsignal(b) and

DSCdata(a) forPVCsample.

This result is indeed not as surprising as it may

lookat arstglane. InaDSC experimentone hasa

referenematerial,thesampletobeprobed,anda

pre-determinedheating(orooling)rateis imposed tothe

systemfor undergoingagiventemperatureexursion.

Aservo-systemmakesthesampletofollowthe

temper-atureoftherefereneandtheheatingpowerdierene

betweenthesampleandtherefereneisreorded. That

is,sinedT=dtisxed, onereordsessentiallydQ=dT.

In Fig. 7 we show the resulting temperature

de-pendene obtainedfor the thermaldiusivity and the

TLsignalparameter,=P,forthepolyarbonate

sam-ple, respetively. The DSC date is shown in urve

(). As performed for the PVC sample, in Fig. 8

we present the temperature derivative of =P. For

omparison, a plot of the temperature derivative of

the DSC data is also presented in Fig. 8, urve (b).

The existene of two minima in the DSC

tempera-turederivative data seemsto reetthe fat that the

polyarbonatesample has twodominant phases. One

phaseorresponding to aglass transition temperature

of about 143 Æ

C, and another one with T

g

of about

148 Æ

C. These two phases orrespond to pure

poly-arbonateandtoa

PCA/ABS(arylonitrile-butadiene-styrene) blend. This ABS blend is used to improve

the mehanial shok resistane of the polyarbonate

usedassafetyeyeglasses. In temperaturederivativeof

=P (Fig. 8a);in thetemperaturerange between140

Æ

C and 160 Æ

C, the peaks exhibit a distint

orrela-tionwith thoseof thetemperaturederivativeof DSC,

Fig. 8b. Themaxima ourat 144.8 Æ

C and 150 Æ

C,

orrespondingto the minimaof theDSC temperature

derivative. Thatis,thetemperaturedependeneof=P

(6)

0.6

0.8

1.0

1.2

2

4

6

8

10

12

14

120

130

140

150

160

170

-0.4

-0.3

-0.2

-0.1

0.0

147

148

149

-0.28

-0.24

-0.20

(a)

D (

1

0

-3

cm

2

/s

)

(b)

θ

/P

(W

-1

)

(c)

Temperature (

0

C)

P

o

wer (m

W

)

slope2=-0.0474

slope1=-0.0415

Figure7. a:Temperaturedependeneofthermaldiusivity

of the polyarbonate. The solidline representsthe

inter-polation shemefor thedata; b: Temperature dependene

ofthermallensamplitudeforpolyarbonate.Thesolidline

is the interpolation obtained from the experimental data;

: Typial DSC urve for polyarbonate showing a wide

glasstransitionfrom140 o

Cto155 o

C.Theinsetshowsthe

inetionpointat148 o

C.

120

130

140

150

160

170

-0.06

-0.04

-0.02

0.00

0.02

0.0

0.5

1.0

(b)

(a)

144.8

150

d(

θ

/P

)/dT

(W

-1

/

0

C)

166

o

C

152.6

o

C

140

o

C

146.8

o

C

149

o

C

d

(DSC)

/d

T

(

m

W

/

O

C)

Temperature (

o

C)

Figure8. a: Temperaturederivativeofthermallens signal

amplitudeobtainedfromtheinterpolatedurveofFig. 6b;

b): TemperaturederivativeoftheDSCdataobtainedfrom

Fig. 6a.

The above results for PVC and polyarbonate

in-diate that the similarity between the behavior of

1=(d=dT) and the DSC urve suggeststhat the TL

resulting signal of this tehnique would be d=dt =

(d=dT)(dT=dt), that is, proportional to d=dT, and

anprovideinformationregardingtheonsetoftheglass

transition.

V Thermal lens in lyotropi

liq-uid rystal

The similarity between lyotropi liquid rystal and

biologial membranes ombined with the well known

uniqueowphenomenapresentedbyliquidrystalline

materials have attrated the attention of many

re-searhersinthelastfewyears. Thestudyofthislassof

liquidrystalsareofonsiderableinterestduetothe

rel-ativelakofdetailed knowledgeoftheirphysial

prop-erties asompared to the thermotropiliquid rystals

andonsidering thepossibilityforexploring these

ma-terialsassensingdevieelements.

TheTL experimentshavebeenperformedforboth

orientation of the liquid rystal samples, i.e. paralell

andperpendiulartothediretoralignment. Itshould

benotedthat theTLtheoretialmodelwasdeveloped

foranisotropimedium, whilein theliquidrystal

ex-periments,espeiallyintheaseoftheplanargeometry,

the parameter hasan eetivevalue,dened as

ke .

Forhomeotropialignmentthere isaradialsymmetry

inthethermallensprole,whihmeansthatthevalues

ofthemeasuredparametersarerelatedtothe

perpen-diularorientationofthediretor. Herewedenoteas

? .

Figures 9a and 9b show the orresponding values

of

ke and

?

(normalized to the laser power) for the

pure LLC sample. For planar geometry the value of

ke

dereasesfromabout2at34 Æ

Cto 0.04at48.3 Æ

C

and beomesnegativebetween48.5 Æ

C and 49.3 Æ

C,

omingbaktoapositivevalueabove49.3 Æ

C.

It follows from Eq. (6) that this inversion of the

ke

signisaonsequeneofahangeofsignofdn=dT.

Wenotethatthisdefousing-self-fousinginversionwas

onlyobservedfortheplanargeometrynearthe

nemati-isotropi phasetransition. Weattribute thisinversion

totherateofhangeoftherefrativeindexwithrespet

to the temperature,namely, dn=dT. It is known that

dn=dT an be expressed as proportional to A[' ℄

[23,40,41℄,where'isthetemperatureoeÆientofthe

eletronipolarizability,isthethermalexpansion

o-eÆient,respetively,andAisaonstantthatdepends

on thesample refrativeindex. In thisrelation 'and

areounteratingfators aeting themagnitudeof

dn=dT. Inourresultsfortheplanargeometry,although

the polarizability is omprisedof twoontributionsof

(7)

dominantand probably ontrols the eetive valueof

theprobebeamphaseshift,

ke .

36

40

44

48

52

-6.00

-4.00

-2.00

0.00

2.00

4.00

N - phase

I - phase

I

N

θ

//e

/ P

e

(W

-1

)

Temperature (

0

C)

Figure 9a. Pure LC normalized probe beam phase shift

ke =Pe.

36

40

44

48

52

0.00

1.00

2.00

3.00

4.00

5.00

I

N

N - phase

I - phase

θ

/ P

e

(W

-1

)

Temperature (

0

C)

Figure 9b. Pure LC normalized probe beam phase shift

? =P

e .

Therefore, a possible mehanism driving the

ob-served inversion of dn=dT in the diretor orientation

is the inrease in the ' values in the long axis of

the mielles, resultingfrom theirhighereletroni

po-larizability near the nemati-isotropi phase

transi-tion asompared tothenemati and isotropiphases.

This agreeswith theobservationthat,in the

nemati-isotropi phase transition the eletroni polarizability

is greatlyenhanedin theaxisparallel tothe diretor

[6℄. The' value is assoiated to the eletroni

polar-2

dipoleharges,Z. Adereasein theratioZ =a 2

means

adereaseintheatomigroupssizeproduinga

onse-quent inreasein thevalue ofthese polarizinggroups.

This, in turn, suggests that the observed inversionin

dn=dT resultsfromahangeinthemiellesshape,

de-reasingthedistanebetweenthedipoleharges. This

explanationisonsistentwith publishedX-ray

dira-tionmeasurements,showingthemiellesshapehange

near thedisoti nemati-isotropi phasetransition in

lyotropiliquidrystal[42℄.

Forthehomeotropiongurationthe

?

values

in-reasewithinreasingtemperaturepresentingapeakat

50 Æ

C, Fig. 9b. In thissample alignment thethermal

expansionoeÆient,;dominatestheobservedhange

in dn=dT,whih is negativein the whole temperature

rangeinvestigatedinthis work.

WenoteinFig.9a,thatthetemperatureofthepeak

of

ke

for theplanaralignmentissmallerthan that of

thepeakinFig.9bforthehomeotropigeometry. This

dierenemaybeattributed to thefat that the

ele-troni polarizability inreases fast in the beginning of

the transition overoming the possible hanges in the

thermalexpansionvalues. Afterreahingthepeak,the

valuesof

ke

entersin agrowingregionuntilreahing

the isotropi phase, indiating that in this

tempera-turerange the thermal expansionoeÆient inreases

anddominatesdn=dT. Forthehomeotropigeometry,

asmentionedbefore,thethermalexpansionoeÆient

dominatesdn=dT inthewhole temperature rangeand

beomesmaximumjustbeforetheisotropiphase.

In Figures 10a and 10b we show the temperature

dependene ofthenormalizedTLsignal,;forthe

fer-rouid doped sample. In this ase the hosen

tem-perature range inluded the isotropi-nemati

transi-tionwhihtookplaearound14 Æ

C. Forthe

nemati-isotropitransitionthebehaviorof=P wassimilar to

thatourredforthepuresample. However,the

inver-sion in the =P valuesfor the isotropi-nemati

tran-sitionourred for the diretor perpendiular

orienta-tion,indiatingthat thehangesin themiellarshape

isoppositeasthat fornemati-isotropitransition.

VI Conlusion and future work

Inonlusion,in thispaperwedisusstheuseof

ther-mal lens tehnique to determine the thermo-optial

properties of omplex uids as afuntion of the

tem-perature. It is also disussed how the experimentally

determinedTL parametersanbeusedtoloatingthe

phasetransition ofthese materials. Theresultshowed

theabilityofthethermallenstehniquetoperformthe

measurements very lose to the phase transition. As

afuture work,weproposethat thetehniqueouldbe

adapted to developa new method, alled dierential

(8)

in-12

18

24

30

36

42

48

54

-20

-10

0

10

20

30

40

I

N

I

C

θ

/ P

e

(W

-1

)

Temperature (

0

C)

Figure 10a. Ferrouid dopedLC normalized probe beam

phaseshift

ke =Pe.

12

18

24

30

36

42

48

54

-200

-100

0

100

200

300

400

I

N

C

I

θ

||

/ P

e

(W

-1

)

Temperature (

0

C)

Figure 10b. Ferrouiddoped LCnormalized probe beam

phaseshift?=Pe:

Aknowledgements

Wearethankfulto theBrazilian ageniesCAPES,

CNPq and Funda~ao Arauaria for the nanial

sup-portofthiswork.

Referenes

[1℄ M.Marinelli,F.Meruri,U.Zammit,andF.Sudieri,

Phys.Rev.E53,701(1996).

[2℄ F.Meruri,M.Marinelli,U.Zammit,andF.Sudieri,

[4℄ J.H. Rohling, A.N. Medina, A.C. Bento, J.R.D.

Pereira, A.F. Rubira, M.L. Baesso, and L.C.M.

Mi-randa,J.Appl.Phys.89,2220(2001).

[5℄ J.H. Rohling,A.N. Medina, J.R.D. Pereira, A.F.

Ru-bira, A.C.Bento, L.C.M. Miranda, andM.L. Baesso,

AnalytialSienes17,s103(2001).

[6℄ G. Vertogen and W. H. de Jeu,Thermotropi Liquid

Crystal,(SpringerVerlag,Berlin,1988).

[7℄ J. Bandrup and E.H. Immerght, Polymer Handbook,

3rded.,pp.V/1ed.(Wiley,NewYork,1989).

[8℄ M.L.Baesso,J.R.D.Pereira,A.C.Bento,A.J.

Palan-gana, A.M.Mansanares,andL. R.Evangelista,Braz.

J.Physis28,359(1998).

[9℄ J.R.D. Pereira, A.J. Palangana, A.M. Mansanares,

E.C.daSilva,A.C.Bento,andM.L.Baesso,Phys.Rev.

E,61,5410 (2000).

[10℄ J.R.D. Pereira, A.M. Mansanares, A.J. Palangana,

M.L. Baesso, A.A. Barbosa, and P.R.G. Fernandes,

Phys.Rev.E,64,062701(2001).

[11℄ J.R.D.Pereira,A.M.Mansanares,A.J.Palangana,and

M.L.Baesso,Phys.Rev.E,6410,012701(2001).

[12℄ G. Hohne, W. Hemminger, and H.-J. Flammershein,

in: Dierenial SanningCalorimetry: A Introdution

forPrationers.(SpringerVerlag,1996).

[13℄ J.H. Rohling, A.N. Medina, A.C. Bento, J.R.D.

Pereira,M.L.Baesso,L.C.M.Miranda,S.M.Lima,and

T.Catunda,AnalytialSienes17,s106(2001).

[14℄ J.R.D. Pereira, A.J. Palangana, A.M. Mansanares,

E.C.daSilva,A.C.Bento,andM.L.Baesso,Analytial

Sienes,17,s175(2001).

[15℄ A. Rosenwaig, Photoaoustis and Photoaousti

Spetrosopy(Wiley,NewYork,1980).

[16℄ H. Vargas and L.C.M. Miranda, Phys. Rep. 161, 43

(1988).

[17℄ A. Lahaineand P.Poulet,Appl. Phys.Lett. 45,953

(1984).

[18℄ A.C. Bento, A.J. Palangana, L.R. Evangelista, M.L.

Baesso, J.R.D. Pereira, E.C. da Silva, and A.M.

Mansanares,Appl.Phys.Lett.68,3371(1996).

[19℄ J.R.D.Pareira,A.M.Mansanares,A.J.Palangana,and

M.L. Baesso, Mol. Cryst. Liq. Cryst. A, 332, 3079

(1999).

[20℄ W.L.F.dosSantos,M.F.Porto,E.C.Muniz,L.Olenka,

M.L. Baesso, A.C. Bento, and A.F. Rubira, J. Appl.

PolymerSiene,77,289(2000).

[21℄ L.Olenka,E.N.Nogueira,W.L.F.dosSantos,E.C.

Mu-niz,A.F.Rubira,A.N.Medina,L.P.Cardoso,L.C.

Mi-randa,M.L.Baesso,andA.C.Bento,J.Phys.D:Appl.

Phys.34,2248 (2001).

(9)

[23℄ M.L.Baesso,J.Shen,andR.D.Snook.J.Appl.Phys.

75,3732(1994).

[24℄ M.L.Baesso,A.C.Bento,A.R.Duarte,A.M.Neto,and

L.C.M. Miranda,J.Appl.Phys.85,8112(1999).

[25℄ M. L.Baesso,J.Shen,andR.D.Snook,Chem.Phys.

Lett.197,255(1992).

[26℄ M.L.Baesso,A.C.Bento,A.A. Andrade,T.Catunda,

J.A.Sampaio,andS.Gama,J.Non-Cryst.Solids219,

165(1997).

[27℄ M.L.Baesso,A.C.Bento,A.A.Andrade,J.A.

Sam-paio,E.Peoraro, L.A.O.Nunes,T.Catunda,andS.

Gama,Phys.Rev.B57,10545(1998).

[28℄ S.M.Lima,T.Catunda,R.Lebullenger,A.C.

Hernan-des, M.L. Baesso, A.C. Bento, and L.C.M. Miranda,

Phys.Rev.B60,15173(1999).

[29℄ A.A.Andrade,T.Catunda,R.Lebullenger,A.C.

Her-nandes, and M.L.Baesso, J.Opt. So.of Am.B 16,

395(1999).

[30℄ A.A.Andrade,T.Catunda,R.Lebullenger,A.C.

Her-nandes,andM.L.Baesso,Elet.Lett.34,117(1998).

[31℄ S.M. Lima, T. Catunda, M.L. Baesso, L.D. Vila, Y.

Messadeq, E.B. Stuhi, and S.J.L. Ribeiro, J.

Non-Cryst.Solids247,222(1999).

[32℄ S.M.Lima,J.A.Sampaio,T.Catunda,R.Lebullenger,

A.C.Hernandes,M.L.Baesso,A.C.Bento,andF.C.G.

Gandra,J.Non-Cryst.Solids 257,337(1999).

[33℄ S.M.Lima,A.A.Andrade,T.Catunda,R.Lebullenger,

A.C.Hernandes, and M.L. Baesso, Appl. Phys.Lett.

78,3220(2001).

[34℄ R.D. Snook, R.D. Lowe, andM. L. Baesso, Analyst

23,587(1998).

[35℄ M.FrankoandC.D.Tran,Rev.Si.Instrum.62,2438

(1991).

[36℄ M.S.BaptistaandC.D.Tran,J.Phys.Chem.B 101,

4209(1997).

[37℄ M.S. Baptista and C.D. Tran, J. Phys. Chem. 99,

12952(1995).

[38℄ J.Shen, R. D. Lowe, and R. D. Snook, Chem. Phys.

165,385(1992).

[39℄ J.Shen,M.L.Baesso,andR.D.Snook,J.Appl.Phys.

75,3738(1994).

[40℄ M.Sparks,J.Appl.Phys.42,5029 (1971).

[41℄ L. Prod'homme, Phys. and Chem. of Glasses 1, 119

(1961).

[42℄ Y. Galerne, A. M. Figueiredo Neto, and L. Liebent,

Imagem

Figure 1. Probe beam and exitation beam in the mode
Figure 2. TL experimental set up.
Fig. 3 shows a typial TL signal for the PVC sam-
Figure 5. Thermal lens signal amplitude parameter of PVC
+4

Referências

Documentos relacionados

rheologial behavior of holesteri liquid rystal

thermal diusivity and the optial absorption oeÆient of one side dyed polymer foils..

these ratios... Normalized PAS intensity in the NIR range for the peaks ratio a) Peak1/Peak2 of PEg samples; b) Peak2/Peak3.

(I) as a funtion of the frequeny (f ) it was possible to ev aluate a harateristi time () in order.. of magnitude as a funtion of the temperature

In this devie the hole transport layer is obtained using a thin lm of 1-(3-methylphenyl)-.. 1,2,3,4 tetrahydroquinoline-6-arboxyaldehyde-1,1'-diphenylhydrazone (MTCD), while

point (whih ours for P/D 13 for long exible

for prodution of thermotropi liquid rystalsC. The hiral fragment synthesised was

we onsider the mehanism of photoalignment of liquid rystals both in the bulk and at the surfae.. by a photosensitive